【空間ベクトル】平面の方程式 3点を通る - 質問解決D.B.(データベース)

【空間ベクトル】平面の方程式 3点を通る

問題文全文(内容文):
【空間ベクトル】平面の方程式解説動画です
-----------------
3点$A(0,1,1),B(1,0,2),C(-3,2,3)$を通る平面の方程式は?
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【空間ベクトル】平面の方程式解説動画です
-----------------
3点$A(0,1,1),B(1,0,2),C(-3,2,3)$を通る平面の方程式は?
投稿日:2020.11.12

<関連動画>

【数B】空間ベクトル:~正射影ベクトルとそれを使った演習~ A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(2,0,1)を通り方向ベクトル(1,2,2)である直線l、B(3,-1,2)を通り方向ベクトル(2,-1,2)である直線mの距離を求めよ。
この動画を見る 

【数C】空間ベクトル:次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2点間の距離を求めよ。A(1,2,3)B(2,4,5)
この動画を見る 

【数B】ベクトル:ベクトルの基本㉑空間における平面上の点を平面の方程式から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 空間ベクトルに対し、次の関係を定める。\hspace{152pt}\\
\overrightarrow{ a }=(a_1,a_2,a_3)と\overrightarrow{ b }=(b_1,b_2,b_3)が、次の(\textrm{i}),(\textrm{ii}),(\textrm{iii})のいずれかを\\
満たしているとき\overrightarrow{ a }は\overrightarrow{ b }より前であるといい、
\overrightarrow{ a }≺ \overrightarrow{ b }と表す。\\
(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1かつa_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1かつa_2=b_2かつa_3 \lt b_3\ \ \ \\
\\
空間ベクトルの集合P=\left\{(x,y,z) | \ x,y,zは0以上7以下の整数\right\}の要素を\\
前から順に\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }とする。ここで、mはPに含まれる要素の総数を表す。\\
つまり、P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}であり、\\
\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)\\
を満たしている。次の各設問に答えよ。\\
(1)\ \overrightarrow{ p_{67} }を求めよ。\\
(2)集合\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}の要素のうちで最大のものを求めよ。
\end{eqnarray}

2022早稲田大学商学部過去問
この動画を見る 

福田の数学〜九州大学2022年理系第1問〜空間における折れ線の最小〜平面の方程式を勉強するよ!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 座標空間内の5点\hspace{220pt}\\
O(0,0,0), A(1,1,0), B(2,1,2), P(4,0,-1), Q(4,0,5)\\
を考える。3点O,A,Bを通る平面を\alphaとし、\overrightarrow{ a }=\overrightarrow{ OA }, \overrightarrow{ b }=\overrightarrow{ OB }とおく。\\
以下の問いに答えよ。\\
(1)ベクトル\overrightarrow{ a }, \overrightarrow{ b }の両方に垂直であり、x成分が正であるような、\\
大きさが1のベクトル\overrightarrow{ n }を求めよ。\\
(2)平面\alphaに関して点Pと対称な点P'の座標を求めよ。\\
(3)点Rが平面\alpha上を動くとき、|\overrightarrow{ PR }|+|\overrightarrow{ RQ }|が最小となるような\\
点Rの座標を求めよ。
\end{eqnarray}

2022九州大学理系過去問
この動画を見る 
PAGE TOP