分数の割り算 - 質問解決D.B.(データベース)

分数の割り算

問題文全文(内容文):
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{4}{7} \div \frac{3}{2} = (\frac{4}{7} \times ▢) \div (\frac{3}{2} \times ▢)=$
投稿日:2023.06.18

<関連動画>

【数A】整数の性質:合同式② a,bは3で割り切れない整数とする。このとき、a⁴+a²b²+b⁴は3で割り切れることを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは3で割り切れない整数とする。このとき、$a^4+a^2b^2+b^4$は3で割り切れることを証明せよ。
この動画を見る 

整数問題 最大公約数と最小公倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A$と$B$の最大公約数を$G$,最小公倍数を$L$とする.
$(A+B)^2-2LG=3600$,$A,B$を求めよ.
この動画を見る 

大阪大 整数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
この動画を見る 

インド数学オリンピック

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数である.
$\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=1$を満たす
$abc \leqq \dfrac{1}{8}$を示せ.

インド数学オリンピック過去問
この動画を見る 

福田の数学〜約数の個数を返す関数の性質〜北里大学2023年医学部第1問(4)〜約数の個数と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 4 )正の整数 N に対して、の正の約数の個数を(い)とする。例えば、12の正の約数は 1 , 2 , 3 , 4 , 6 , 12 の 6 個であるから、$f(12)= 6$である。
(i)$f(5040)=\fbox{シ}$である。
(ii)$f(k)=15$を満たす正の整数$k$のうち、 2 番目に小さいものは$\fbox{ス}$である。
(iii)大小2つのサイコロを投げるとき、出る目の積を$l$とおく。$f(l)=4$となる確率は$\fbox{セ}$である。
(iv)正の整数mとnは互いに素で、等式$f(mn)=3f(m)+5f(n)-13$を満たすとする。このとき、$mn$を最小にする$m$と$n$の組$(m,n)$は$\fbox{ソ}$である。

2023杏林大学医過去問
この動画を見る 
PAGE TOP