【数検2級】数学検定2級 問題9~問題12 - 質問解決D.B.(データベース)

【数検2級】数学検定2級 問題9~問題12

問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
チャプター:

0:00 オープニング
0:16 問題9の解き方
1:59 問題10の解き方
3:45 問題11の解き方
5:05 問題12の解き方
5:58 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.整式$x^4+3x^2+3x-2$を$x^2-2x+2$で割ったときの余りを求めなさい。
問題10.xy平面上の2点A(-2,0),B(4,-3)を結んでできる線分ABを2:1に内分する点Pの座標を求めなさい。
問題11.次の計算をしなさい。
    $\log_{10}\dfrac{1}{36}+2\log_{10}\dfrac{6}{5}-\log_{10}4$
問題12.$0\leqq\theta\leqq 2\pi$のとき、次の方程式を満たす$\theta$の値を求めなさい。
    $-2\sin\theta+1=0$
備考:【数検2級】数学検定2級 問題1~問題3
https://youtu.be/PJ-TzNwOebw

【数検2級】数学検定2級 問題4~問題8
https://youtu.be/aYMhlG67wpo

【数検2級】数学検定2級 問題9~問題12
https://youtu.be/N179SJxTbwE

【数検2級】数学検定2級 問題13~問題15
https://youtu.be/ILsHyZqKGMs
投稿日:2022.02.05

<関連動画>

#数検準1級1次#極限#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 3 } \displaystyle \frac{x-3}{\sqrt{ 3x+7 }-4}$

出典:数検準1級1次
この動画を見る 

【数検2級】数学検定2級 問題4~問題8

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題4. 2次関数$y=x^2+4x+a$の最小値が1となるように、定数aの値を定めなさい。
問題5. $0°\leqq\theta\leqq 180°$とします。$\tan\theta=\dfrac{1}{2}$のとき、$\cos\theta$の値を求めなさい。
問題6. 3個のさいころを同時に振るとき、3個とも異なる目が出る確率を求めなさい。ただし、さいころの目は1から6まであり、どの目も出る確率は等しいものとします。
問題7. 2進法で表された数$1011010_{(2)}$を10進法で表しなさい。
問題8. 次の計算をしなさい。$\dfrac{x+1}{x+2} -\dfrac{x+2}{x+3}$
この動画を見る 

三乗根の外し方 数検1級向け計算練習

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 3 ]{ \sqrt{ 5 }+2 }$の値を求めよ
この動画を見る 

【中学数学】中学数学:数学検定3級2次:問題1・2

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#数学検定・数学甲子園・数学オリンピック等#空間図形#文字と式#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1.右の図は、縦の長さがa ㎝、横の長さがb ㎝の長方形と、1辺の長さがc ㎝の正方形です。次の問いに答えなさい。
(1) 長方形の周の長さを、a、b を用いて表しなさい。
(2) 長方形の面積の2倍と正方形の面積を合わせた面積は150 ㎝²未満です。この数量の関係を表した式はどれですか。
下の①~⑥の中から1つ選びなさい。
   ① 2ab + c² > 150  ② 2ab + c² ≧ 150  ③ 2ab + c² < 150  
   ④ 2ab + c² ≦ 150  ⑤ a²b²+ c² < 150  ⑥ a²b²+ c² ≦ 150
 
問題2.底面が1辺8㎝の正方形で、高さが6㎝の2つの正四角錐があります。右の図の八面体ABCDEFは、この2つの正四角錐を
ぴったり合わせたものです。次の問いに答えなさい。
(3) 辺CDとねじれの位置にある辺はどれですか。すべて答えなさい。
(4) この八面体の体積は何㎝³ですか。単位をつけて答えなさい。
この動画を見る 

数検準1級 極限値 高校数学

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{x \sin x}{1-\cos 3x}$


(2)
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin (2\sin x)}{3x}$


(3)
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{2-x}{\sqrt{ x+2 }-2}$

出典:数学検定準1級 過去問
この動画を見る 
PAGE TOP