2023高校入試数学解説98問目 整数問題 秋田県 - 質問解決D.B.(データベース)

2023高校入試数学解説98問目 整数問題 秋田県

問題文全文(内容文):
nは100より小さい素数
$\frac{231}{n+2}$が整数となるnをすべて求めよ
2023秋田県
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
nは100より小さい素数
$\frac{231}{n+2}$が整数となるnをすべて求めよ
2023秋田県
投稿日:2023.03.07

<関連動画>

2024山口大 1の10乗根のナイスな問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2Z^4+(1-\sqrt{ 5 })Z^2+2=0$であるとき
(1)$Z^{10}=1$であることを示せ
(2)$\cos \displaystyle \frac{\pi}{5} \cos \displaystyle \frac{2\pi}{5}=\displaystyle \frac{1}{4}$を示せ

出典:2024年山口大学数学 過去問
この動画を見る 

【理数個別の過去問解説】1968年度東京工業大学 数学 第1問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式$ab+1≦abc≦bc+ca+ab+1$をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第4問整数〜長方形のタイルを並べて長方形を作る

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第4問
色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。
(1)横の長さが462で縦の長さが110である赤い長方形を、図1(※動画参照)のように並べて正方形や長方形を作ることを考える。
462と110の両方を割り切る素数のうち最大のものは$\boxed{\ \ アイ\ \ }$である。
赤い長方形を並べて作ることができる正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ウエオカ\ \ }$のものである。
また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の絶対値が$\boxed{\ \ キク\ \ }$になるときであることがわかる。
縦の長さが横の長さより$\boxed{\ \ キク\ \ }$長い長方形のうち、横の長さが最小であるものは、横の長さが$\boxed{\ \ ケコサシ\ \ }$のものである。
(2)花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2(※動画参照)のような正方形や長方形を作ることを考えている。
このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが$\boxed{\ \ スセソ\ \ }$のものであり、図2のような長方形は縦の長さが$\boxed{\ \ スセソ\ \ }$の倍数である。
二人は、次のように話している。
花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。
太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、図2のような正方形の横の長さは462と363を組み合わせて作ることができる長さでないといけないね。
花子:正方形だから、横の長さは$\boxed{\ \ スセソ\ \ }$の倍数でもないといけないね。
462と363の最大公約数は$\boxed{\ \ タチ\ \ }$であり、$\boxed{\ \ タチ\ \ }$の倍数のうちで$\boxed{\ \ スセソ\ \ }$の倍数でもある最小の正の整数は$\boxed{\ \ ツテトナ\ \ }$である。
これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ニヌネノ\ \ }$のものであることがわかる。

2023共通テスト過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解

アイキャッチ画像
単元: #連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$ 
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。

2017一橋大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP