0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題 - 質問解決D.B.(データベース)

0.5分で要点が分かる!「二次関数と直線」の動画!~全国入試問題解法 #shorts #数学 #入試問題

問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.

ノートルダム女学院高校過去問
単元: #数学(中学生)#中3数学#2次関数#図形と方程式#点と直線#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
放物線$y=a^2x^2$と直線$y=ax+2$が異なる2点$A,B$で交わっている.
ただし,$a \gt b$とする.
$\triangle OAB$の面積が15となる$a$の値を求めよ.

ノートルダム女学院高校過去問
投稿日:2022.08.25

<関連動画>

福田の数学〜東京工業大学2023年理系第5問(PART1)〜4直線に接する球面の決定

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#点と直線#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田のわかった数学〜高校2年生017〜折れ線の長さの最小値2

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
原点中心,半径$r$の円$C$上に2点$A,B$を、
$\theta=\angle AOB \lt \displaystyle \frac{\pi}{2}$となるようにとり、劣弧$AB$
上に点$R$,線分$OA,OB$上にそれぞれ$P,Q$をとる。
$PQ+QR+RP$の最小値を$r,\theta$で表せ。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(1)〜図形の証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#図形と計量#三角比への応用(正弦・余弦・面積)#図形と方程式#恒等式・等式・不等式の証明#点と直線#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)三角形ABCにおいて辺BCを4:3に内分する点をDとするとき、等式
$\boxed{\ \ あ\ \ }$$AB^2$+$\boxed{\ \ い\ \ }$$AC^2$=$AD^2$+$\boxed{\ \ う\ \ }$$BD^2$
が成り立つ。

203慶應義塾大学医学部過去問
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(2)〜3直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)$t$を実数とする。座標平面上の3つの直線
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+(2t-2)y-4t+2=0 \\
x+(2t+2)y-4t-2=0 \\
2tx+y-4t=0     
\end{array}
\right.
 (-2 \leqq t \leqq 1)
\end{eqnarray}$ 
が1つの点で交わるようなtの値を全て求めると$t=\boxed{イ}$である。

2021立教大学理学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題097〜早稲田大学2020年度教育学部第4問〜曲線の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上で、定数k>0に対し、曲線y=$\frac{k}{\sqrt{1+x^2}}$の0≦x≦1の部分を$C_k$とする。
(1)曲線$C_k$上の点と原点との距離の最大値$M(k)$を求めよ。
(2)原点を中心に曲線$C_k$を1回転させるとき、$C_k$が通る部分の面積$S(k)$を求めよ。

2020早稲田大学教育学部過去問
この動画を見る 
PAGE TOP