問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です
天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
【共通テスト数学IA】整数の性質の解説動画です
天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
単元:
#数A#整数の性質#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】整数の性質の解説動画です
天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
【共通テスト数学IA】整数の性質の解説動画です
天秤ばかりの皿$A$に物体$X$をのせ、皿$B$に3gの分銅3個を乗せたところ、天秤ばかりは$B$の側に傾いた。
さらに、皿$A$に8gの分銅1個をのせたところ、天秤ばかりは$A$の側に傾き、皿$B$に3gの分銅2個をのせると天秤ばかりは釣り合った。
このとき、皿$A,B$にのせているものの質量を比較すると
$M+8 \times $[ア]$= 3 \times$[イ] が成り立ち、$M=$[ウ]である。上の式は
$3 \times $[イ]$+8(-$[ア]$)=M$ と変形することができ、$x=$[イ]$, y=-$[ア]は、方程式$3x+8y=M$の整数解の一つである。
投稿日:2023.12.28