気付けば一瞬系 指数 - 質問解決D.B.(データベース)

気付けば一瞬系 指数

問題文全文(内容文):
$2^a = 3,3^b=4,4^c=8$のとき$2abc=?$
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^a = 3,3^b=4,4^c=8$のとき$2abc=?$
投稿日:2022.10.28

<関連動画>

どっちがでかい?問題作成の裏側

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 127^{22} vs 33^{31},どちらが大きいか?$
この動画を見る 

簡単すぎた

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 5^x=0.5^y=10000$である.
$\dfrac{1}{x}-\dfrac{1}{y}$はいくつであるか求めよ.
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第1問〜対数関数と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1] (1)$\log_{10}10=\boxed{\ \ ア\ \ }$である。また、$\log_{10}5,\log_{10}15$をそれぞれ
$\log_{10}2と\log_{10}3$を用いて表すと
$\log_{10}5=\boxed{\ \ イ\ \ }\log_{10}2+\boxed{\ \ ウ\ \ }$
$\log_{10}15=\boxed{\ \ エ\ \ }\log_{10}2+\log_{10}3+\boxed{\ \ オ\ \ }$
(2)太郎さんと花子さんは、$15^{20}$について話している。
以下では、$\log_{10}2=0.3010、\log_{10}3=0.4771$とする。

太郎:$15^{20}$は何桁の数だろう。
花子:$15$の20乗を求めるのは大変だね。$\log_{10}15^{20}$の整数部分に
着目してみようよ。

$\log_{10}15^{20}$は
$\boxed{\ \ カキ\ \ } \lt \log_{10}15^{20} \lt \boxed{\ \ カキ\ \ }+1$
を満たす。よって、$15^{20}は\boxed{\ \ クケ\ \ }$桁の数である。

太郎:$15^{20}$の最高位の数字も知りたいね。だけど、$\log_{10}15^{20}$の
整数部分にだけ着目してもわからないな。
花子:$N・10^{\boxed{カキ}} \lt 15^{20} \lt (N+1)・10^{\boxed{カキ}}$を満たすような
正の整数Nに着目してみたらどうかな。

$\log_{10}15^{20}$の小数部分は$\log_{10}15^{20}-\boxed{\ \ カキ\ \ }$であり
$\log_{10}\boxed{\ \ コ\ \ } \lt \log_{10}15^{20}-\boxed{\ \ カキ\ \ } \lt \log_{10}(\boxed{\ \ コ\ \ }+1)$
が成り立つので、$15^{20}$の最高位の数字は$\boxed{\ \ サ\ \ }$である。


[2]座標平面上の原点を中心とする半径1の円周上に3点$P(\cos\theta,\sin\theta),$
$Q(\cos\alpha,\sin\alpha),R(\cos\beta,\sin\beta)$がある。ただし、$0 \leqq \theta \lt \alpha \lt \beta \lt 2\pi$
とする。このとき、$s$と$t$を次のように定める。
$s=\cos\theta+\cos\alpha+\cos\beta, t=\sin\theta+\sin\alpha+\sin\beta$

(1)$\triangle PQR$が正三角形や二等辺三角形のときの$s$と$t$の値について考察しよう。
考察$1:\triangle PQR$が正三角形である場合を考える。
この場合、$\alpha,\beta$を$\theta$で表すと
$\alpha=\theta+\displaystyle \frac{\boxed{\ \ シ\ \ }}{3}\pi, \beta=\theta+\displaystyle \frac{\boxed{\ \ ス\ \ }}{3}\pi$
であり、加法定理により
$\cos\alpha=\boxed{\boxed{\ \ セ\ \ }}, \sin\alpha=\boxed{\boxed{\ \ ソ\ \ }}$
である。同様に、$\cos\beta$および$\sin\beta$を、$\sin\theta$と$\cos\theta$を用いて表すことができる。
これらのことから、$s=t=\boxed{\ \ タ\ \ }$である。

$\boxed{\boxed{\ \ セ\ \ }},\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
①$\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
④$-\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
⑤$-\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$-\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$-\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$

考察2:$\triangle PQR$が$PQ=PR$となる二等辺三角形である場合を考える。

例えば、点$P$が直線$y=x$上にあり、点$Q,R$が直線$y=x$に関して対称
であるときを考える。このとき、$\theta=\displaystyle \frac{\pi}{4}$である。また、$\alpha$は
$\alpha \lt \displaystyle \frac{5}{4}\pi, \beta$は$\displaystyle \frac{5}{4}\pi \lt \beta$を満たし、点$Q,R$の座標について、
$\sin\beta=\cos\alpha, \cos\beta=\sin\alpha$が成り立つ。よって
$s=t=\displaystyle \frac{\sqrt{\boxed{\ \ チ\ \ }}}{\boxed{\ \ ツ\ \ }}+\sin\alpha+\cos\alpha$
である。
ここで、三角関数の合成により
$\sin\alpha+\cos\alpha=\sqrt{\boxed{\ \ テ\ \ }}\sin\left(\alpha+\displaystyle \frac{\pi}{\boxed{\ \ ト\ \ }}\right)$
である。したがって

$\alpha=\displaystyle \frac{\boxed{\ \ ナニ\ \ }}{12}\pi, \beta=\displaystyle \frac{\boxed{\ \ ヌネ\ \ }}{12}\pi$

のとき、$s=t=0$である。

(2)次に、$s$と$t$の値を定めるときの$\theta,\alpha,\beta$の関係について考察しよう。
考察$3:s=t=0$の場合を考える。

この場合、$\sin^2\theta+\cos^2\theta=1$により、$\alpha$と$\beta$について考えると
$\cos\alpha\cos\beta+\sin\alpha\sin\beta=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
である。
同様に、$\theta$と$\alpha$について考えると
$\cos\theta\cos\alpha+\sin\theta\sin\alpha=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
であるから、$\theta,\alpha,\beta$の範囲に注意すると
$\beta-\alpha=\alpha-\theta=\displaystyle \frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\pi$
という関係が得られる。

(3)これまでの考察を振り返ると、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ ホ\ \ }}$であることが分かる。
$\boxed{\boxed{\ \ ホ\ \ }}$の解答群
⓪$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$ならば
$\triangle PQR$は正三角形である。
①$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$で
あっても$\triangle PQR$は正三角形でない場合がある。
②$\triangle PQR$が正三角形であっても$s=t=0$でない場合があるが
$s=t=0$ならば$\triangle PQR$は正三角形である。
③$\triangle PQR$が正三角形であっても$s=t=0$でない場合があり、
$s=t=0$であっても$\triangle PQR$が正三角形でない場合がある。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 実数からなる集合A,B,Cを次のように定義する。ただし、a \gt 0\\
A=\left\{x |\ |x| \lt a \right\}\\
B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}\\
C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}\\
\\
(1)A \cap Bが空集合であるための必要十分条件はa \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }である。\\
(2)A \supset Bであるための必要十分条件はa \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }である。\\
\\
\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }の選択肢:(\textrm{a})= (\textrm{b})\lt  (\textrm{c})\leqq  (\textrm{d})\gt  (\textrm{e})\geqq (\textrm{f})≠  \\
\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }の選択肢:(\textrm{a})1 (\textrm{b})2  (\textrm{c})3  (\textrm{d})5  (\textrm{e})7 (\textrm{f})10  \\
(\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7\\
\\
(3)-1 \boxed{\ \ き\ \ }Cであり、5 \boxed{\ \ く\ \ }Cである。\\
\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }の選択肢:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset\\
(4)Cに属する整数は\boxed{\ \ オ\ \ }個ある。\\
(5)A \subset Cとなるaのうち、整数で最大のものは\boxed{\ \ カ\ \ }である。\\
(6)A \supset Cとなるaのうち、整数で最小のものは\boxed{\ \ キ\ \ }である。
\end{eqnarray}

2021上智大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} xy平面上に、xの関数\\
f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2\\
のグラフy=f(x)がある。y=f(x)が任意のaに対して\\
通る定点をP、点Pにおける接線がy=f(x)と交わる点をQとおく。\\
(1)点Pの座標は\boxed{\ \ ツ\ \ }であり、点Pにおける接線の方程式はy=\boxed{\ \ テ\ \ }である。\\
(2)a=5のとき、y=f(x)上の点における接線は、x=\boxed{\ \ ト\ \ }において傾きが\\
最小になる。\\
(3)x=\boxed{\ \ ト\ \ }においてf(x)が極値をとるとき、a=\boxed{\ \ ナ\ \ }であり、\\
点(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))をSとおくと、三角形SPQの面積は\boxed{\ \ ニ\ \ }である。\\
\end{eqnarray}

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP