福田の1.5倍速演習〜合格する重要問題095〜明治大学2020年度理工学部第1問(3)〜円順列と確率 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題095〜明治大学2020年度理工学部第1問(3)〜円順列と確率

問題文全文(内容文):
$\Large\boxed{1}$ (3)A, B, C, D, Eの5人が、無作為に並び、手をつないでひとつの輪を作るという試行を考える。
(a)この試行を1回行うとき、AがBとCの2人と手をつなぐ確率は$\frac{\boxed{コ}}{\boxed{サ}}$である。
(b)この試行を3回行うとき、Aと3回手をつなぐ人が2人いる確率は$\frac{\boxed{シ}}{\boxed{スセ}}$である。
(c)この試行を3回行うとき、Aと3回手をつなぐ人が1人だけいる確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

2020明治大学理工学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)A, B, C, D, Eの5人が、無作為に並び、手をつないでひとつの輪を作るという試行を考える。
(a)この試行を1回行うとき、AがBとCの2人と手をつなぐ確率は$\frac{\boxed{コ}}{\boxed{サ}}$である。
(b)この試行を3回行うとき、Aと3回手をつなぐ人が2人いる確率は$\frac{\boxed{シ}}{\boxed{スセ}}$である。
(c)この試行を3回行うとき、Aと3回手をつなぐ人が1人だけいる確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

2020明治大学理工学部過去問
投稿日:2023.02.01

<関連動画>

ロト7全パターン買ったらプラス?

アイキャッチ画像
単元: #数A#場合の数と確率#確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ロト7全パターン買ったらプラス?
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問3_確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
袋の中に、当たりくじ6本と、はずれくじ4本の合計10本のくじが入っている。
袋 からくじを引くときは、1回につき同時に2本のくじを引くものとし、2本とも当 たりくじを引くことを「大当り」と呼ぶこととする。
(1)袋からくじを1回引くとき、「大当り」となる確率を求めよ。
(2)A,B,C,Dの4人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじはす べて毎回袋に戻す。
(i)4人とも、「大当り」とならない確率を求めよ。
(ii)4人のうち1人だけが「大当り」となる確率を求めよ。
(iii)2人以上が続けて「大当り」とならない確率を求めよ。
(3)A,B,C,D,Eの5人がこの順に袋からくじを1回ずつ引く。ただし、引いたくじは すべて袋に戻さない。このとき、5人のうち2人だけが「大当り」となる確率を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(1)〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。
点Pの座標が(2,2)である確率は$\boxed{\ \ ス\ \ }$であり、Pと原点との距離が3以上である
確率は$\boxed{\ \ セ\ \ }$である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない
条件付確率は$\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

【受験対策】数学-確率②

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
① 1.2.3.4.5の数字を1つずつ記入した5枚のカードがある。
このカードをよくきってから1枚ずつ2回続けて引き、引いた順に左から並べて2けたの整数をつくる。
このとき、できた2けたの整数が4の倍数である確率を求めよう。

② トランプのスペードのカードが1枚、ハート、ダイヤのカードがそれぞれ2枚ずつある。
この5枚のカードをよくきってから、2枚のカードを同時に取り出すとき、1枚はハートのカードで1枚はダイヤのカードとなる確率を求めよう。

③ 袋の中に、赤玉が2個、白玉が3個入っている。
この袋の中から、はじめにAさんが玉を1個取り出す。
取り出した玉を袋に戻さず、次にBさんが玉を1個取り出す。
このとき、2人の取り出した玉が異なる色であればAさんの勝ち、同じ色であればBさんの勝ちとする。
AさんとBさんのうちで勝ちやすいのはどちらか、次の㋐~㋒から正しいものを1つ選び、それが正しいことの理由を、2人の勝つ確率をもとに書こう。
ただし、どの玉が取り出されることも同様に確からしいものとする。

㋐ Aさん

㋑ Bさん

㋒ 2人とも同じ
この動画を見る 
PAGE TOP