問題文全文(内容文):
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値
出典:東京慈恵会医科大学 過去問
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値
出典:東京慈恵会医科大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値
出典:東京慈恵会医科大学 過去問
$a,b$実数
$x^3+ax^2+(2+\sqrt{ 2 })x+b=0$の1つの解が$\displaystyle \frac{\sqrt{ 2 }+\sqrt{ 6 }\dot{ \iota }}{2}$
他の2解を$\alpha, \beta$
$a,b$および$\alpha^{10} +\beta^{10}$の値
出典:東京慈恵会医科大学 過去問
投稿日:2019.01.24