気付けば一瞬!!2つの直角二等辺三角形の面積の和 - 質問解決D.B.(データベース)

気付けば一瞬!!2つの直角二等辺三角形の面積の和

問題文全文(内容文):
2つの直角二等辺三角形の面積の和=?
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの直角二等辺三角形の面積の和=?
*図は動画内参照
投稿日:2022.07.25

<関連動画>

整数問題 あれを使えばスッキリ解決

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bが互いに素ならば、abとa²-b²も互いに素であることを示せ
この動画を見る 

【受験対策】数学-確率③

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①大小2つのさいころを同時に投げ、異なる目が出た場合は、出た目の数の大きい方を得点とし、2つとも同じ目が出た場合は、出た目の数の和を得点とする。
これらのさいころを1回投げたとき、得点が4点となる確率を求めよう。

② 右の図のように、点、A、B、C、D、E、F、G、Hを頂点とする 立方体があり、この頂点上を移動する2点、P,Qがある。
大小2つのさいころを同時に1回投げる。
点Pは、点Aを出発点として、大きいさいころの出た目の数だけ、→B→C→D→A→B→C の順に移動し、点Qは、点Eを出発点として、小さいさいころの出た目の数だけ、→H→G→F→E→H→Gの順に移動する。
このとき、直線PQと直線CGが、ねじれの位置にある確率を求めよう。
ただし、さいころを投げるとき、1から6までのどの目が 出ることも同様に確からしいものとする。

※図は動画内参照
この動画を見る 

【数A】【図形の性質】作図の応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。

右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。

右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
この動画を見る 

神戸大 N進法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N_{(10)}$を7進法、11進法で表すといずれも3ケタになり、数字の並びが反対であった。
$N_{(10)}$を求めよ
$ac \neq 0$

出典:1968年神戸大学 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$ m,n(m \gt n)$を求めよ.
$ \dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{77}$
この動画を見る 
PAGE TOP