千葉大(医)の類題 整数 - 質問解決D.B.(データベース)

千葉大(医)の類題 整数

問題文全文(内容文):
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$

千葉大(医)過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$(n,k)$をすべて求めよ.
$11^n=k^2+12960$

千葉大(医)過去問
投稿日:2021.12.04

<関連動画>

【数学ゴールデン】2巻と5巻で紹介された整数問題を解いてみた #数学ゴールデン #数学オリンピック #整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
黒板に1以上100以下の整数が1つずつ書かれている。
黒板から整数$a,b$を選んで消し、新たに$a^2b^2+3$と$a^2+n^2+2$の最大公約数を書くという操作を繰り返し行う。
黒板に書かれている整数が1つだけになったとき、その整数は平方数でないことを示せ。
$a,2,3,4,・・・,99,100$
$2^23^2+3=39$と$2^2+3^2+2=15$の最大公約数は3
残り1つになった整数は平方数でない
この動画を見る 

福田の数学〜北里大学2024医学部第1問(4)〜正の約数の個数と総和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2052の正の約数は全部で$\fbox{コ}$個あり、2052の正の約数の総和は$\fbox{サ}$である。また、300以下の正の整数のうち、正の約数の個数が偶数であるものは全部で$\fbox{シ}$個ある。
この動画を見る 

【シンプルな問題の実態は…?】整数:大東文化大学第一高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$300$を$2$けたの自然数$N$で割ると,商があまりの$2$倍になった.
$N$を求めよ.

大東文化第一高校過去問
この動画を見る 

絶対値 中1も解ける!! 海星高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
ある整数xの絶対値が4より小さいという。
xは全部でいくつの整数が考えられるか。

海星高校
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数列$\left\{a_n\right\}$を次のように定める。
$a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)$
(1)正の整数nが3の倍数のとき、$a_n$は5の倍数となることを示せ。
(2)k,nを正の整数とする。$a_n$が$a_k$の倍数となるための必要十分条件をk,nを
用いて表せ。
(3)$a_{2022}$と$(a_{8091})^2$の最大公約数を求めよ。

2022東京大学理系過去問
この動画を見る 
PAGE TOP