東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University - 質問解決D.B.(データベース)

東大 三角比 放物線 Mathematics Japanese university entrance exam Tokyo University

問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#図形と計量#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=2 \sqrt{ 3 }(x- \cos \theta)^2+ \sin \theta$
$y=-2 \sqrt{ 3 }(x+ \cos \theta)^2- \sin \theta$
この2つの放物線が相違となる2点で交わるような$\theta$の範囲

出典:2002年東京大学 過去問
投稿日:2019.02.01

<関連動画>

【数Ⅰ】2次関数:関数決定その3! 最小値がわかっている場合

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす放物線をグラフにもつ2次関数を求めよ。
x=1で1最小値5をとり、x=3のときy=7となる。
この動画を見る 

数と式 式の展開②【化学のタカシーがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
$(a+1)^3$  $(x+3y)^3$
$(2a-1)^3$  $(-3a+2b)^3$

展開せよ
$(a+5)(a^2-5a+25)$
$(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$
$(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$    $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b)$     $(2x-y)^3(2x+y)^3$
$(a+b)^2(a-b)^2(a+ab+b)^2(a-ab+b)^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
$(a+b+c)^2+(a+b-c)^2+(b+c-a)^2+(c+a-b)^2$
この動画を見る 

2023高校入試数学解説48問目 見えないものを見ようとして桐朋

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
A,F,E,Dは同一円周上にあることを示せ
*図は動画内参照

2023 桐朋高等学校
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第1問不等式の解と図形の計量

アイキャッチ画像
単元: #数Ⅰ#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第1問
[1]実数xについての不等式
|$x$+6| $\leqq$ 2
の解は
$\boxed{\ \ アイ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }$
である。
よって、実数$a,b,c,d$が
|(1-$\sqrt3$)($a-b$)($c-d$)+6| $\leqq$2
を満たしているとき、1-$\sqrt3$は負であることに注意すると、($a-b$)($c-d$)
の取り得る値の範囲は
$\boxed{\ \ オ\ \ }+\boxed{\ \ カ\ \ }\sqrt3 \leqq (a-b)(c-d) \leqq \boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3$
であることがわかる。
特に
$(a-b)(c-d)=\boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3 \cdots①$
であるとき、さらに
$(a-c)(b-d)=-3+\sqrt3 \cdots②$
が成り立つならば
$(a-d)(c-b)=\boxed{\ \ ケ\ \ }+\boxed{\ \ コ\ \ }\sqrt3 \cdots③$
であることが、等式①,②,③の左辺を展開して比較することによりわかる。

[2]
(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A,B
をAB=6となるようにとる。また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
(i)$\sin\angle ACB=\boxed{\boxed{\ \ サ\ \ }}$である。また、点Cを\angle ACBが鈍角となるようにとるとき、$\cos\angle ACB=\boxed{\boxed{\ \ シ\ \ }}$である。
(ii)点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
$\tan\angle OAD=\boxed{\boxed{\ \ ス\ \ }}$である。また、$\triangle ABC$の面積は$\boxed{\ \ セソ\ \ }$である。

$\boxed{\boxed{\ \ サ\ \ }}$ ~ $\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$\displaystyle\frac{3}{5}$ ①$\displaystyle\frac{3}{4}$ ②$\displaystyle\frac{4}{5}$ ③ 1④$\displaystyle\frac{4}{3}$
⑤$-\displaystyle\frac{3}{5}$ ⑥$-\displaystyle\frac{3}{4}$ ⑦$-\displaystyle\frac{4}{5}$ ⑧ -1⑨$-\displaystyle\frac{4}{3}$
(2)半径が5である球Sがある。この球面上に3点P,Q,Rをとったとき、
これらの3点を通る平面α上でPQ=8, QR=5, RP=9であったとする。
球Sの球面上に点Tを三角錐TPQRの体積が最大となるようにとるとき、その体積を
求めよう。
まず、$\cos\angle QPR=\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}$である
ことから、$\triangle PQR$の面積は$\boxed{\ \ ツ\ \ }\sqrt{\boxed{\ \ テト\ \ }}$である。
次に、点Tから平面αに垂直な直線を引き、平面αとの交点をHとする。このとき、PH,QH,RHの長さについて、$\boxed{\boxed{\ \ ナ\ \ }}$が成り立つ。
以上より、三角錐TPQRの体積は$\boxed{\ \ ニヌ\ \ }\left(\sqrt{\boxed{\ \ ネノ\ \ }}+\sqrt{\boxed{\ \ ハ\ \ }}\right)$である。
$\boxed{\boxed{\ \ ナ\ \ }}$の解答群
⓪PH<QH<RH ①PH<RH<QH 
②QH<PH<RH ③QH<RH<PH 
④RH<PH<QH ⑤RH<QH<PH 
⑥PH=QH=RH 

2023共通テスト過去問
この動画を見る 

日大(医)中学生もチャレンジして!

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P=a^4-25a^2-50a-25であり、
\vert P \vertが素数となる整数aを求めよ。$
この動画を見る 
PAGE TOP