岩手大 3次方程式の解 共役の複素数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

岩手大 3次方程式の解 共役の複素数 Mathematics Japanese university entrance exam

問題文全文(内容文):
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$

(1)
$a,b$と他の2解を求めよ。

(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?

出典:2006年岩手大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$

(1)
$a,b$と他の2解を求めよ。

(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?

出典:2006年岩手大学 過去問
投稿日:2019.03.18

<関連動画>

【高校数学】むやみに代入するな!因数定理のちょっとした裏技! #Shorts

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。

$x^3+6x^2-6x+7$
この動画を見る 

大阪教育大 複素数の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt{ 3 }i,\beta=1-\sqrt{ 3 }i$

(1)
$\displaystyle \frac{1}{\alpha^2}+\displaystyle \frac{1}{\beta^2}$の値を求めよ

(2)
$\displaystyle \frac{\beta^8}{\alpha^7}$の値を求めよ

(3)
$z^4=-8\beta$を満たす$z$を求めよ

出典:1999年大阪教育大学 過去問
この動画を見る 

フツーにやっても出るけどね三次方程式解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$としたとき、
次の3つを解にもつ3次方程式を作れ.
(1)$\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\delta}$
(2)$\dfrac{1}{\alpha^2},\dfrac{1}{\beta^2},\dfrac{1}{\delta^2}$
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(4)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#図形と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)$\theta$は実数で、$-\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$を満たす。方程式
$4\cos\frac{\theta}{2}(\cos\frac{\theta}{2}+\sin\frac{\theta}{2})=1$
を満たすとき、$\sin\theta+\cos\theta$の値は$\boxed{\ \ カ\ \ }$であり、
$\sin\theta$の値は$\boxed{\ \ キ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

東京理科大 多項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2)^n$の$x^2$の係数を$a_n$
$a_n$を$n$で表せ

出典:2000年東京理科大学 過去問
この動画を見る 
PAGE TOP