対頂角が等しいのはなぜ? 気付けば一瞬 - 質問解決D.B.(データベース)

対頂角が等しいのはなぜ? 気付けば一瞬

問題文全文(内容文):
$\angle x= \angle y$を示せ
*図は動画内参照

単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x= \angle y$を示せ
*図は動画内参照

投稿日:2022.06.10

<関連動画>

福田の一夜漬け数学〜図形と方程式〜直線の方程式(9)点と直線の距離の公式と三角形の内心、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 3直線$\ell:3x+4y-36=0,$ $m:4x-3y+27=0,$ $n:3x-4y-20=0$で
囲まれた三角形の内心の座標を求めよ。
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(1)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 平面上に2点$A(-2,2),B(2,6)$がある。直線$l:y=2x$上の動点$P$で
$AP+PB$が最小となるような点$P$の座標とその最小値を求めよ。

${\Large\boxed{2}}$ 平面上に2点$A(7,2),B(2,8)$がある。$x$軸上の動点$P$、$y$軸上の
動点$Q$で、$AP+PQ+QB$が最小となる点$P$、$Q$の座標とそのときの
最小値を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(8)点と直線の距離の公式と角の二等分線、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2直線$\ell:5x+12y+2=0,$ $m:12x+5y-19=0$
の間の角を二等分する直線の方程式を求めよ。
この動画を見る 

【短時間でマスター!!】直線の方程式(平行と垂直)の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
直線の方程式
並行と垂直の条件
①点$(1,-3)$を通り、直線$4x+5y=2$に平行な直線
②点$(0,1)$を通り、直線$y=-3x-1$に垂直な直線
この動画を見る 

2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の方程式を求めるのに連立方程式を使うのは卒業しましょう。
この動画を見る 
PAGE TOP