東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam

問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$

(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ

(2)
$\beta^3$以下の最大の整数を求めよ

(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ

出典:2003年東京大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$

(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ

(2)
$\beta^3$以下の最大の整数を求めよ

(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ

出典:2003年東京大学 過去問
投稿日:2019.03.27

<関連動画>

方針は簡単、効率よく答えを出そう

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{4n^2-12n-183}$が整数となる整数nをすべて求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第3問〜平均と分散の変換

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}$(1)ある学校で100点満点のテストを行うことになった。
まず10人の教員で解いてみたところ、その得点のヒストグラムは
右図(※動画参照)のようになった。ただし、得点は整数値とする。
このデータの平均値は$\boxed{\ \ ア\ \ }$点、中央値は$\boxed{\ \ イ\ \ }$点、
最頻値は$\boxed{\ \ ウ\ \ }$点、分散は$\boxed{\ \ エ\ \ }$点である。
(2)A組とB組の2つのクラスで数学のテストを行ったところ、A組の得点の平均
値が$\overline{x}_A$、分散が$s_A^2$、B組の得点の平均値が$\overline{x}_B$、分散が$s_B^2$となった。
ただし、$\overline{x}_A,\overline{x}_B,s_A^2,s_B^2$はいずれも0ではなかった。このとき、B組の各生徒
の得点$x$に対して、正の実数aと実数bを用いて$y=ax+b$と変換し、
yの平均値と分散をA組の平均値と分散に一致させるためには、
$a=\boxed{\ \ オ\ \ }、b=\boxed{\ \ カ\ \ }$とすればよい。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

式の値 早稲田実業

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2 - b^2 -a -b = 0$のとき
$a^2+b^2-2ab-a+b=?$
(a>0,b>0)
早稲田実業学校
この動画を見る 

綺麗な問題。それしかないことを示すのが肝

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数nを求めよ
$2^n+n^3=2024$
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第1問(3)〜条件を満たす点の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b$を正の実数とする。座標平面上に点$\textrm{A}(a,1)$をとり、自然数$n=1,2,3,\cdots$に対して点$\textrm{P}_n(n,0)$をとる。集合$U$を次で定める。
$U=\{n|n$は自然数かつ2点$\textrm{A}, \textrm{P}_n$間の距離は$b$以下$\}$
(a) $a=2$とする。$b=1$のとき、$U$の要素の個数は?また、$b=\sqrt{3}$のとき、$U$の要素の個数は?
(b) $a=\dfrac72$とする。$b=\sqrt2$のとき、$U$の要素の個数は?また、$b=2\sqrt2$のとき、$U$の要素の個数は?
(c) $b=2$のとき、$U$の要素の個数が2個となる正の整数$a$は?また、$b=5$のとき、$U$の要素の個数が9個となる最小の正の整数$a$は?
この動画を見る 
PAGE TOP