問題文全文(内容文):
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ
出典:2007年滋賀県立大学 過去問
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ
出典:2007年滋賀県立大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ
出典:2007年滋賀県立大学 過去問
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ
出典:2007年滋賀県立大学 過去問
投稿日:2019.05.18