北海道大 確率 - 質問解決D.B.(データベース)

北海道大 確率

問題文全文(内容文):
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。

(1)
4回以内(4回を含む)に終わる確率は?

(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$

出典:2006年北海道大学 過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1つのサイコロを投げ続けて、2回連続して同じ目が出たら終了。

(1)
4回以内(4回を含む)に終わる確率は?

(2)
$r$回以内に終わる確率は?
$(r \geqq 2)$

出典:2006年北海道大学 過去問
投稿日:2019.06.17

<関連動画>

【数A】【場合の数と確率】反復試行の確率、サイコロの確率 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを7回投げるとき、1の目が3回、2の目が2回、その他の目が2回出る確率を求めよ。
この動画を見る 

法政大 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 法政大学過去問

サイコロ4つを同時に投げる。
出た目の積が300の倍数となる確率
この動画を見る 

【理数個別の過去問解説】2020年度北海道大学 数学 第3問(3)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを2以上の自然数とする。一個のサイコロを続けてn回投げる試行を行い、
出た目を順に$X_1X_2・・・X_n$とする。

(1)$X_1X_2・・・X_n$の最大公約数が3となる確率を$n$の式で表せ。
(2)$X_1X_2・・・X_n$の最大公約数が1となる確率を$n$の式で表せ。
(3)$X_1X_2・・・X_n$の最小公倍数が20となる確率を$n$の式で表せ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病原菌にはA型、B型の2つの型がある。A型とB型に同時に感染することはない。その病原菌に対して、感染しているかどうかを調べる検査Yがある。
検査結果は陽性か陰性のいずれかで、陽性であったときに病原菌の型までは判別できないものとする。検査Yで、A型の病原菌に感染しているのに陰性と判定される確率が10 %であり、B型の病原菌に感染しているのに陰性と判定される確率が20 %である。また、この病原菌に感染していないのに陽性と判定される確率が10 %である。
全体の1 %がA型に感染しており全体の4 %がB型に感染している集団から1人を選び検査Yを実施する。
(1)検査Yで陽性と判定される確率は$\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}$である。
(2)検査Yで陽性だった時に、A型に感染している確率は$\frac{\boxed{\ \ ハ\ \ }}{\boxed{\ \ ヒ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$である。
(3)1回目の検査Yに加えて、その直後に同じ検査Yをもう一度行う。ただし、1回目と2回目の検査結果は互いに独立であるとする。2回の検査結果が共に陽性であったときに、A型に感染している確率は$\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}$でありB型に感染している確率は$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}$である。
この動画を見る 

福田の数学〜魔方陣の基礎知識があると楽に解けるね〜慶應義塾大学2023年環境情報学部第3問(2)〜魔方陣と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
( 2 )まず、図 2 の 9 つのマスに、縦、横、斜めにならんだ 3 つの数の和がいずれも等しくなるように、相異なる 1 ~ 9 の正の整数を 1 つずっ割り当てる。複数の割り当て方が考えられるが、その 1 つを選び割り当てるものとする。この 9 つの数を、図 3 に示すように 3 つのサイコロの展開図に書き写し、図 4のように 3 つのサイコロを作成する。サイコロは振ると、等しい確率で目(書き写した数)が出るものとする。いま、 2 人のプレ ー ヤ ー が 3 つのサイコロから異なるものを 1 つずつ選び、そのサイコロを振り、出た目が大きい方が勝っとする。あなたの対戦相手が9 を含むサイコロを選んだとき、あなたがこのゲ ー ムに、より高確率に勝っために選ぶべきサイコロは、$\fbox{エ}$を含むサイコロである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP