名古屋大 3次式の係数決定 - 質問解決D.B.(データベース)

名古屋大 3次式の係数決定

問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c$
$a,b,c$は整数
$f(\sqrt{ 2 })=0$
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$f(w)$は実数
$a,b,c$の値を求めよ

出典:2006年名古屋大学 過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c$
$a,b,c$は整数
$f(\sqrt{ 2 })=0$
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$f(w)$は実数
$a,b,c$の値を求めよ

出典:2006年名古屋大学 過去問
投稿日:2019.06.20

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田のおもしろ数学200〜3次方程式の解の公式、カルダノの公式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3次方程式$ax^3+bx^2+cx+d=0 ~~(a\neq0)$の解を導く
この動画を見る 

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る 

数学「大学入試良問集」【16−3 ド・モアブルの定理と累乗の取り扱い】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$z$を絶対値が1の複素数とする。
このとき以下の問いに答えよ。
(1)$z^3-z$の実部が$0$となるような$z$をすべて求めよ。
(2)$z^5+z$の絶対値が1となるような$z$をすべて求めよ。
(3)$n$を自然数とする。$z^n+1$の絶対値が1となるような$z$となるような$z$をすべてかけ合わせて得られる複素数を求めよ。
この動画を見る 

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
この動画を見る 
PAGE TOP