ヨビノリたくみ 東大入試問題解説 - 質問解決D.B.(データベース)

ヨビノリたくみ 東大入試問題解説

問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
投稿日:2019.07.02

<関連動画>

階乗!!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$7! \times 6! = \boxed ?!$
この動画を見る 

288 数列の100以下の項を足し合わせる:漸化式とΣの面倒な問題もプログラムで楽々解決! #shorts

アイキャッチ画像
単元: #情報Ⅰ(高校生)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#プログラミング#プログラムによる動的シミュレーション#数B
指導講師: めいちゃんねる
問題文全文(内容文):
288 数列の100以下の項を足し合わせる:漸化式とΣの面倒な問題もプログラムで楽々解決! #shorts
【問題文】次のプログラムの実行結果を答えよ。
※プログラムは動画内参照
この動画を見る 

福田のおもしろ数学425〜8次方程式が等差数列をなす4つの実数解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

方程式$x^8+ax^4+1=0$が

等差数列をなす$4$つの実数解をもつとき、

実数$a$の値を求めよ。
   
この動画を見る 

福田の数学〜一橋大学2022年文系第5問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
中身の見えない2つの箱があり、1つの箱には赤玉2つと白玉1つが入っており、
もう1つの箱には赤玉1つと白玉2つが入っている。どちらかの箱を選び、選んだ
箱の中から玉を1つ取り出して元に戻す、という操作を繰り返す。
(1) 1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら前回とは異なる箱を選ぶ。n回目に赤玉
を取り出す確率$p_n$を求めよ。
(2)1回目は箱を無作為に選び、2回目以降は、前回取り出した玉が赤玉なら前回
と同じ箱、前回取り出した玉が白玉なら箱を無作為に選ぶ。n回目に赤玉を取り
出す確率 $q_n$を求めよ。

2022一橋大学文系過去問
この動画を見る 

広島大 数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{7}{1・2・3}+\displaystyle \frac{11}{2・3・4}+\displaystyle \frac{15}{3・4・5}+…$

分子は等差数列
分母は連続3数の積

出典:1993年広島大学 過去問
この動画を見る 
PAGE TOP