群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和 - 質問解決D.B.(データベース)

群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和

問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
投稿日:2019.07.10

<関連動画>

高校への数学執筆者 秋田洋和先生が解説!!(岡山県)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
この動画を見る 

17愛知県教員採用試験(数学:1-2番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$\frac{n}{225} < 1$ $(n \in \mathbb{N})$をみたす既約分数の個数
この動画を見る 

整数の問題& 場合の数 2024早稲田実業

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣2⃣3⃣4⃣の4枚のカードを
$▢^▢×▢▢$のように並べる
式の値が3の倍数となる並べ方は何通り?
2024早稲田実業学校
この動画を見る 

2023高校入試数学解説60問目 整数問題 早大学院 訂正はコメント欄に

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$N=3n^2+72n+260$
Nと2023の差が最も小さくなるような自然数nは?

2023早稲田大学 高等学院
この動画を見る 

茨城大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$21^{2015}$を$400$で割った余りを求めよ

(2)
$2^{2x+1}+1$は$3$の倍数

出典:茨城大学 過去問
この動画を見る 
PAGE TOP