埼玉大 微分積分 三次関数極値の差 ヨビノリ技 - 質問解決D.B.(データベース)

埼玉大 微分積分 三次関数極値の差 ヨビノリ技

問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ

出典:2018年埼玉大学 過去問
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ

出典:2018年埼玉大学 過去問
投稿日:2019.08.27

<関連動画>

【数Ⅲ】微分の公式 積・商・合成関数の微分【中身と外側を区別しよう】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
微分の公式 積・商・合成関数の微分に関して解説していきます.
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 曲線C:y=e^xを考える。\\
(1)a,bを実数とし、a \geqq 0とする。曲線Cと直線y=ax+bが共有点をもつため\\
のaとbの条件を求めよ。\\
(2)正の実数tに対し、C上の点A(t,e^t)を中心とし、直線y=xに接する円Dを\\
考える。直線y=xと円Dの接点Bのx座標は\boxed{\ \ タ\ \ }であり、\\
円Dの半径は\boxed{\ \ チ\ \ }である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標\\
をそれぞれX(t),Y(t)とする。このとき、等式\\
\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0\\
が成り立つような実数kを定めるとk=\boxed{\ \ ツ\ \ }である。\\
ただし、\lim_{t \to \infty}te^{-t}=0である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第4問〜関数の増減と実数解をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)関数
$y$=$\displaystyle-\frac{\cos3x}{\sin^3x}$ (0<$x$<$\pi$)
の増減と極値を調べ、そのグラフの概形を描け。ただし、グラフの凹凸は調べなくてよい。
(2)$a$を実数の定数とする。$x$についての方程式
$-\cos3x$=$a\sin^3x$
が$\displaystyle\frac{\pi}{6}$<$x$<$\displaystyle\frac{2\pi}{3}$の範囲に実数解をもつような$a$の値の範囲を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 実数aは正の定数とする。実数全体で定義された関数f(x)=\frac{|x+a|}{\sqrt{x^2+1}}について、\\
\\
次の問いに答えよ。\\
(1)f(x)がx=-aで微分可能であるかどうか調べよ。\\
(2)f(x)の最大値が\sqrt2となるように、定数aの値を定めよ。\\
(3)定数aは(2)で定めた値とする。y=f(x)のグラフとx軸およびy軸で囲まれた部分\\
をx軸の周りに1回転させてできる立体の体積Vを求めよ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP