信州大 二項展開 数学的帰納法 合同式 良問再投稿 - 質問解決D.B.(データベース)

信州大 二項展開 数学的帰納法 合同式 良問再投稿

問題文全文(内容文):
$4^{2n-1}+3^{n+1}$
13の倍数であることを示せ
3通りの解法

出典:信州大学 過去問
単元: #数列#数学的帰納法#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^{2n-1}+3^{n+1}$
13の倍数であることを示せ
3通りの解法

出典:信州大学 過去問
投稿日:2019.09.06

<関連動画>

慶應(医)数列 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
数列$\{ a_n \}$の項の間に次の関係がある。
$a_1=\frac{1}{2},a_2=\frac{1}{6}$
$\frac{a_n+a_{n+1}+a_{n+2}}{3} = \frac{1}{n(n+3)}$
$n=1,2,3\cdots$
$a_3,a_4,a_n,\displaystyle\sum_{k=1}^\infty a_n$を求めよ。
この動画を見る 

2022藤田医科大 等差数列の超基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
公差が0でない整数の等差数列$a_n$がある
$\sum_{ }^{ } a_n$はn=7で
最大値119 $a_n$を求めよ。

藤田医学科大学
この動画を見る 

17愛知県教員採用試験(数学:6番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
6⃣$2na_n=\displaystyle \sum_{k=1}^n k a_k+n$
$a_n$を求めよ。
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る 
PAGE TOP