金沢大 複素数 6次方程式 - 質問解決D.B.(データベース)

金沢大 複素数 6次方程式

問題文全文(内容文):
$z^6+27=0$
複素数$z$をすべて求めよ

出典:2017年金沢大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^6+27=0$
複素数$z$をすべて求めよ

出典:2017年金沢大学 過去問
投稿日:2019.09.20

<関連動画>

福田の数学〜慶應義塾大学2022年商学部第1問(3)〜放物線の法線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に
垂直な直線である。放物線$C_1:y=x^2$上の点$P(a,a^2)$(ただし、$a\neq 0$とする)
における法線の方程式は$y=\boxed{\ \ ア\ \ }$である。
また、実数$p,q$に対し、放物線$C_2:y=-(x-p)^2+q$上のある点における
法線が、放物線$C_1$上の点(1,1)における法線と一致するとき、pとqについて
$q=\boxed{\ \ イ\ \ }$という関係式が成り立つ。

2022慶應義塾大学商学部過去問
この動画を見る 

浜松医大 対数の基本 数3不要

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)2進法で30桁の自然数nを10進法で表すと何桁か,
$\log_{10}=0.3010$

(2)自然数nを2進法で表すと$a_n$桁となる.
$\displaystyle \lim_{ n \to \(x) } \dfrac{\log_{10}n}{a_n}$を求めよ.

浜松医大過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第5問〜立体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間内の点A(0,0,2)と点B(1,0,1)を結ぶ線分ABをz軸の周りに
1回転させて得られる局面をSとする。S上の点Pとxy平面上の点Qが$PQ=2$を
満たしながら動くとき、線分PQの中点Mが通過しうる範囲をKとする。
Kの体積を求めよ。

2022東京大学理系過去問
この動画を見る 

大学入試問題#493「詰みまでの構想力が必要」 東京理科大学(2001) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int (t\sqrt{ 1+t^2 }+\displaystyle \frac{t^3}{\sqrt{ 1+t^2 }})dt$

出典:2001年東京理科大学 入試問題
この動画を見る 

大学入試問題#721「落ち着いて計算」 早稲田商学部(2012) 積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
定数関数でない関数$f(x)$が
$f(x)=x^2-\displaystyle \int_{0}^{1}(f(t)+x)^2 dt$を満たすとき$f(x)$を求めよ。

出典:2012年早稲田大学商学部 入試問題
この動画を見る 
PAGE TOP