ヨビノリ東大入試問題解説 たわしリクエスト - 質問解決D.B.(データベース)

ヨビノリ東大入試問題解説 たわしリクエスト

問題文全文(内容文):
$a_1=r,a_2=r+1,a_{n+2}=a_{n+1}(a_n+1)$
$a_n$を素数$P$で割った余りを$b_n$

(1)
$b_{n+2}$は$b_{n+1}(b_n+1)$を$p$で割った余りと一致することを示せ

(2)
$r=2,p=17$の場合に10以下のすべての自然数$r$に対し、$b_n$を求めよ

(3)
ある相異なる2つの自然数$n,m$に対して$b_{n+1}=b_{m+1} \gt 0,b_{n+2}=b_{m+2}$が成り立つとき、$b_n=b_m$を示せ

出典:東京大学 入試問題
単元: #学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=r,a_2=r+1,a_{n+2}=a_{n+1}(a_n+1)$
$a_n$を素数$P$で割った余りを$b_n$

(1)
$b_{n+2}$は$b_{n+1}(b_n+1)$を$p$で割った余りと一致することを示せ

(2)
$r=2,p=17$の場合に10以下のすべての自然数$r$に対し、$b_n$を求めよ

(3)
ある相異なる2つの自然数$n,m$に対して$b_{n+1}=b_{m+1} \gt 0,b_{n+2}=b_{m+2}$が成り立つとき、$b_n=b_m$を示せ

出典:東京大学 入試問題
投稿日:2019.09.23

<関連動画>

大学入試問題#21 千葉大学(2020) tanの定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^n\theta\ d\theta+\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^{n+2}\theta\ d\theta$を$n$の式で表せ

(2)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^7\theta\ d\ \theta$を求めよ。

出典:2020年千葉大学 入試問題
この動画を見る 

大学入試問題#100 東京大学(1954) 軌跡・領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
点($x,y$)が原点を中心とする半径1の円の内部を動くとき
点($x+y,xy$)の動く範囲を図示せよ。

出典:1954年東京大学 入試問題
この動画を見る 

名古屋市立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2$と$y=k$が動画内の図のように交わり$S_1+S_3=S_2$となる。
$k$の値を求めよ。

出典:2001年名古屋市立大学 過去問
この動画を見る 

大学入試問題#307 産業医科大学(2013) #定積分 #King property

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\cos\theta}{2\cos^2(\theta-\displaystyle \frac{\pi}{4})}d\theta$

出典:2013年産業医科大学 入試問題
この動画を見る 

東京学芸大

アイキャッチ画像
単元: #学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023東京学芸大学過去問題

①$log x\lt \sqrt x$を示し,$\displaystyle \lim_{x\to\infty}\dfrac{\log x}{x}$を求めよ.
②$m^n=n^m$を満たす自然数$m,n(m\lt n)$をすべて求めよ.

この動画を見る 
PAGE TOP