高校入試だけど二重根号 - 質問解決D.B.(データベース)

高校入試だけど二重根号

問題文全文(内容文):
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$

慶應義塾高等学校
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=\sqrt{6+\sqrt{11}} , y=\sqrt{6-\sqrt{11}} $
$(x+y)^2 = ?$

慶應義塾高等学校
投稿日:2021.12.22

<関連動画>

データの分析 度数分布表【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の表は25人の生徒のテストの得点のデータから作った度数分布表である。
(1)このデータの平均値のとり得る範囲を求めよ。
(2)60点以上69点以下の階級に含まれる値が次ののようであるとき、全体のデータの中央値を求めよ。
68 63 66 62 68 63 67 65
この動画を見る 

お茶の水女子大 微分積分 絶対値のついた2次関数 面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(x)=|x^2-4x+3|$
$g(x)=ax(a \gt 0)$
$f(x)$と$g(x)$が4つの共有点をもつ$a$の範囲

(2)
次の不等式の表す領域の面積
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq |x^2-4x+3 \\
y \leqq x
\end{array}
\right.
\end{eqnarray}$

出典:2009年お茶の水女子大学 過去問
この動画を見る 

【For you 動画-13】  高1-二重根号・絶対値 (数Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
計算せよ。
①$\sqrt{ 4-2\sqrt{ 3 } }=$
②$\sqrt{11+ \sqrt{ 72 } }=$
③$\sqrt{ 4-\sqrt{15 } }=$
④$\vert x \vert=6$
⑤$\vert x \vert \lt 6$
⑥$\vert x \vert \geqq 6$
⑦$\vert x -8 \vert \leqq 3$
⑧$\vert 2x-6 \vert \lt 8$
⑨$\vert 3x-1 \vert \geqq 4$
この動画を見る 

福田の数学〜明治大学2024全学部統一IⅡAB第1問(4)〜図形の計量

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
平面上に正方形ABCD (※図は動画内参照) がある。点Pが辺BC上にあり、線分APを直径とする円が辺CDと接するものとする。このとき $\cos{\angle\mathrm{DAP}}=\frac{\fbox{セ}}{\fbox{ソ}}$ であり、また $\sin{\angle\mathrm{APD}}=\frac{\fbox{タチ}\sqrt{\fbox{ツテ}}}{\fbox{トナ}}$ である。
この動画を見る 

山梨大(医)整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2020}$を$x^2-x+1$で割った余りを求めよ.

2020山梨大(医)過去問
この動画を見る 
PAGE TOP