気付けば一瞬!!の確率の問題 東奥義塾 - 質問解決D.B.(データベース)

気付けば一瞬!!の確率の問題 東奥義塾

問題文全文(内容文):
1⃣ 2⃣ 3⃣ 4⃣ 5⃣
の5枚のカードから3枚のカードを並べてできる3ケタの整数で
奇数となる確率は?

東奥義塾高等学校
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣ 2⃣ 3⃣ 4⃣ 5⃣
の5枚のカードから3枚のカードを並べてできる3ケタの整数で
奇数となる確率は?

東奥義塾高等学校
投稿日:2021.11.22

<関連動画>

福田の数学〜東京大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

白玉$2$個が横に並んでいる。

投げたとき表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインを用いて、

次の手順 (*) をくり返し、

白玉または黒玉を横一列に並べていく。

手順(*)

$\quad$コインを投げ、

$\quad$表が出たら白玉、裏が出たら黒玉を、

$\quad$それまでに並べられている一番右にある玉の

$\quad$右隣におく。

$\quad$そして、新しくおいた玉の色が

$\quad$その$1$つ左の玉の色と異なり、

$\quad$かつ$2$つ左の玉の色と一致するときには、

$\quad$新しくおいた玉の$1$つ左の玉を新しくおいた玉と

$\quad$同じ色の玉にとりかえる。

例えば、手順(*)を$2$回行いコインが裏、表の順に

出た場合には、白玉が$4$つ並ぶ。

正の整数$n$に対して、手順(*)を$n$回行った時点での

$(n + 2)$個の玉の並び方を考える。

(1)$n = 3$のとき、

右から$2$番目の玉が白玉である確率を求めよ。

(2)$n$を正の整数とする。

右から$2$番目の玉が白玉である確率を求めよ。

(3)$n$を正の整数とする。

右から$1$番目と$2$番目の玉がともに白玉である確率を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

【数A】【場合の数と確率】さいころ2個の目の積の期待値 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2個のさいころを同時に投げるとき、2個の目の積の期待値を求めよ。
この動画を見る 

【高校数学】  数A-4  場合の数① ・ 基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①1,1,1,2,3の中から、3個の数字を使ってできる3桁の整数は何通り?

②大中小3個のさいころを投げる時、目の和が6になるのは何通り?

③(a+b)(c+d+e+f)を展開したとき、項は何個できる?
この動画を見る 

『3×4=?』

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【問題文】『3×4=?』
この動画を見る 

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 
PAGE TOP