大学入試じゃないよ 高校入試だよ 3通りで解説 成城学園 - 質問解決D.B.(データベース)

大学入試じゃないよ 高校入試だよ  3通りで解説 成城学園

問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?


成城学園高等学校
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{56}と5^{24}$はどっちが大きい?


成城学園高等学校
投稿日:2021.11.15

<関連動画>

福岡大(医)連立指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は1でない正の実数であるとする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}=x^{90}
\end{array}
\right.
\end{eqnarray}$

福岡大(医)過去問
この動画を見る 

千葉大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
この動画を見る 

福田の数学〜慶應義塾大学2024年経済学部第3問〜指数関数で定義された数列の漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 実数$a$に対して$f(a)$=$\displaystyle\frac{1}{2}(2^a-2^{-a})$とおく。また、$A$=$2^a$とする。
(1)等式$\displaystyle\left(A-\frac{1}{A}\right)^3$=$\displaystyle\boxed{\ \ ア\ \ }\left(A-\frac{1}{A}\right)^3$-$\displaystyle\boxed{\ \ イ\ \ }\left(A-\frac{1}{A}\right)$ より、実数$a$に対して
$\left\{f(a)\right\}^3$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}f(3a)$-$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}f(a)$ ...①が成り立つ。
(2)実数$a$,$b$に対して$f(a)$=$b$が成り立つならば、$A$=$2^a$は2次方程式
$A^2$-$\boxed{\ \ キ\ \ }bA$-$\boxed{\ \ ク\ \ }$=0
を満たす。$2^a$>0より、$a$は$b$を用いて
$a$=$\log_2\left(\boxed{\ \ ケ\ \ }b+\sqrt{b^2+\boxed{\ \ コ\ \ }}\right)$ ...②
と表せる。つまり、任意の実数bに対して$f(a)$=$b$となる実数$a$が、ただ1つに定まる。
以下、数列$\left\{a_n\right\}$に対して$f(a_n)$=$b_n$ ($n$=1,2,3,...)で定まる数列$\left\{b_n\right\}$が、関係式
$4b_{n+1}^3$+$3b_{n+1}$-$b_n$=0 ($n$=1,2,3,...) ...③
を満たすとする。
(3)①と③から$f\left(\boxed{\ \ サ\ \ }a_{n+1}\right)$=$f(a_n)$ ($n$=1,2,3,...)となるので、(2)より、
$a_n$=$\displaystyle\frac{a_1}{\boxed{\ \ シ\ \ }^{n-p}}$ ($n$=1,2,3,...)が得られる。ここで、$p$=$\boxed{\ \ ス\ \ }$である。
(4)$n$≧2に対して、$S_n$=$\displaystyle\sum_{k=2}^n3^{k-1}b_k^3$ とおく。$c_n$=$3^nb_n$ ($n$=1,2,3,...)で定まる数列$\left\{c_n\right\}$の階差数列を用いると、③より、
$S_n$=$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}b_1$-$\frac{\boxed{\ \ タ\ \ }^n}{\boxed{\ \ チ\ \ }}b_n$ ($n$=2,3,4,...)
となる。ゆえに、$b_1$=$\displaystyle\frac{4}{3}S_5$-108 が成り立つならば$a_1$=$\boxed{\ \ ツテト\ \ }\log_2\boxed{\ \ ナ\ \ }$ である。
この動画を見る 

金沢大 指数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=8^x-4^{x+\frac{1}{2}}+2^x+\dfrac{23}{27}$
$-2\leqq x\leqq a(a\gt -2)$における$f(x)$の最大値が$1$となる$a$の範囲を求めよ.

2020金沢大過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (2)座標平面上で、次の3つの3次関数のグラフについて考える。\\
y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤\\
y=5x^3-x^2+3x+5 \ldots⑥\\
④,⑤,⑥の3次関数のグラフには次の共通点がある。\\
共通点:・y軸との交点のy座標は\boxed{\ \ ソ\ \ } である。\\
・y軸との交点における接線の方程式は y=\boxed{\ \ タ\ \ }\ x+\boxed{\ \ チ\ \ } である。\\
\\
a,b,c,dを0でない実数とする。\\
曲線y=ax^3+bx^2+cx+d上の点(0, \boxed{\ \ ツ\ \ })における接線の方程式は\\
y=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ } である。\\
次にf(x)=ax^3+bx^2+cx+d, g(x)=\boxed{\ \ テ\ \ }\ x+\boxed{\ \ ト\ \ }とし、\\
f(x)-g(x)について考える。\\
h(x)=f(x)-g(x)とおく。a,b,c,dが正の実数であるとき、y=h(x)のグラフ\\
の概形は\boxed{\ \ ナ\ \ }である。\\
\\
(※\boxed{\ \ ナ\ \ }の解答群は動画参照)\\
y=f(x)のグラフとy=g(x)のグラフの共有点のx座標は\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }である。\\
また、xが\frac{\boxed{\ \ ニヌ\ \ }}{\boxed{\ \ ネ\ \ }}と\boxed{\ \ ノ\ \ }の間を動くとき、\\
|f(x)-g(x)|の値が最大となるのは、x=\frac{\boxed{\ \ ハヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }}のときである。
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 
PAGE TOP