2020年問題 合同式の基本 - 質問解決D.B.(データベース)

2020年問題 合同式の基本

問題文全文(内容文):
$2020^{100}$を$19$で割った余りを求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
問題文全文(内容文):
$2020^{100}$を$19$で割った余りを求めよ
投稿日:2019.11.06

<関連動画>

11の倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
11の倍数の判定法
この動画を見る 

立方の差でも平方の和でも表せる素数を探せ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$37=4^3-3^3=1^2+6^2$のように
素数$=b^3-a^3=c^2+d^2$(a,b,c,dは自然数)と表せる
素数を37以外に探せ
この動画を見る 

数検準1級2次(5番 整数問題)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$ 5以上の任意の素数$p$に対して,$p^2$を$n$で割ると1余る.
最大の自然数$n$を求めよ.

①$n\leftarrow IN$
$n^2=3k$ or $3k+1 (^3k\Leftarrow IN)$
②$5\leqq p:係数$
$p=6k\pm 1 (^3k\Leftarrow IN)$
この動画を見る 

整数問題 桃山学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nは自然数
$4m^2+n^2 = 200 $を満たすmnの値を全て求めよ。

桃山学院高等学校
この動画を見る 

【数A】整数の性質:結局何で割った余り?

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学A 整数の性質】
3で割ると2余り、5で割ると3余り、7で割ると2余る整数を一般化せよ。

これを合同式を用いて解きます。
この動画を見る 
PAGE TOP