東京医科歯科大 整式の大小比較 - 質問解決D.B.(データベース)

東京医科歯科大 整式の大小比較

問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ

(1)
$a^3+b^3,a^2b+ab^2$

(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$


出典:2010年東京医科歯科大学 過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は異なる整数
大小比較せよ

(1)
$a^3+b^3,a^2b+ab^2$

(2)
$(a+b+c)(a^2+b^2+c^2)$
$(a+b+c)(ab+bc+ca)$
$3(a^3+b^3+c^3),9abc$


出典:2010年東京医科歯科大学 過去問
投稿日:2019.11.20

<関連動画>

これの何が間違い?

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の解き方を解説していきます。
この動画を見る 

福田のわかった数学〜高校1年生014〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#2次関数#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 絶対不等式(2)
ある実数$x$に対して
$ax^2 + 4x + a \gt 0$
が成り立つような$a$の値の範囲は?
この動画を見る 

大学入試問題#606「見るからに落とせない気がする」 福島大学(2012) #方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x=\sqrt{ 2+\sqrt{ x^2-2 } }$を満たす実数$x$を求めよ

出典:2012年福島大学 入試問題
この動画を見る 

計算問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ N=\sqrt[3]{4}+\sqrt[3]{2}+1,\dfrac{1}{N^3}+\dfrac{3}{N^2}+\dfrac{3}{N}$
の値を求めよ.
この動画を見る 

【共通テスト】数学IA 第2問を瞬時に解くテクニックを解説します(2021.本試験)

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
ストライドを$x$、ピッチを$z$とおく。
ピッチは1秒あたりの少数、ストライドは1歩あたりの進む距離なので、1秒あたりの進む距離すなわち平均速度は、$x$と$z$を用いて[ア](m/秒)と表される。
これより、タイムと、ストライド、ピッチとの関係は
タイム=$\displaystyle \frac{100}{[ア]}$

と表されるので、[ア]が最大になるときにタイムが最もよくなる。
ただし、タイムがよくなるとは、タイムの値が小さくなることである。

[ア]を以下から選べ。
⓪$x+z$
①$z-x$
②$xz$

③$\displaystyle \frac{x+z}{[2]}$

④$\displaystyle \frac{z-x}{[2]}$

⑤$\displaystyle \frac{xz}{[2]}$


(2)
男子短距離100m走の選手である太郎さんは、①に着目して、タイムが最もよくなるストライドとピッチを考えることにした。
次の表は、太郎さんが練習で100mを3回走ったときのストライドとピッチのデータである。
-----------------
      1回目 2回目 3回目
ストライド  2.05 2.10 2.15
ピッチ 4,70 4.60 4.50
-----------------
また、ストライドとピッチにはそれぞれ限界がある。
太郎さんの場合、ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという関係があると考えて、ピッチがストライドの1次関数としてなされると仮定した。
このとき、ピッチ$z$はストライド$x$を用いて
$z=[イウ]x+\displaystyle \frac{[エオ]}{5}$ と表される。

②が太郎さんのストライドの最大値2.40とピッチの最大値4.80まで成り立つと仮定すると、$x$の値の範囲は次のようになる。
$[カ].[キク]\leqq x \leqq 2.40$

$y=[ア]$とおく。
②を$y=[ア]$に代入することにより、$y$と$x$の関数として表すことができる。
太郎さんのタイムが最もよくなるストライドとピッチを求めるためには、$[カ].[キク]\leqq x \leqq 2.40$の範囲で$y$の値を最大にする$x$の値を見つければよい。
このとき、$y$の値が最大になるのは$x=[ケ].[コサ]$のときである。
よって、太郎さんのタイムが最もよくなるのは、ストライドが[ケ].[コサ]のときであり、このとき、ピッチは[シ].[スセ]である。
このときの太郎さんのタイムは①により[ソ]である。

[ソ]については、最も適当なものを、次の⓪~⑤のうちから、一つ選べ。
⓪9.68
①9.97
②10.09
③10.33
④10.42
⑤10.55
この動画を見る 
PAGE TOP