変な方程式 - 質問解決D.B.(データベース)

変な方程式

問題文全文(内容文):
$x$の値を求めよ
$(26+15\sqrt{ 3 })^x-3(7+4\sqrt{ 3 })^x$
$-2(2+\sqrt{ 3 })^x+(2-\sqrt{ 3 })^x=3$
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$の値を求めよ
$(26+15\sqrt{ 3 })^x-3(7+4\sqrt{ 3 })^x$
$-2(2+\sqrt{ 3 })^x+(2-\sqrt{ 3 })^x=3$
投稿日:2020.01.15

<関連動画>

大学入試問題#897「解法の迷走」 #北海道大学(2024)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{x^2-x+1}{x^2+x+1}$
が整数となるような実数$x$をすべて求めよ。

出典:2024年北海道大学後期
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
10!の正の約数dすべてについて
$\frac{1}{d+ \sqrt{10!} }$の合計
この動画を見る 

ただの方程式ではないよ

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x-6}{2020} + \frac{x-5}{2021} + \frac{x-4}{2022} = 3$
この動画を見る 

整数問題 履正社 (大阪)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{\frac{900}{n}}$と$\frac{n+2}{9}$がともに自然数となる自然数nのうち最も小さいものは?
履正社高等学校
この動画を見る 

【数A】整数の性質:最大公約数と最小公倍数から3つの自然数の組(a,b,c)の決定

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の(A),(B),(C)を満たす3つの自然数の組(a,b,c)をすべて求めよ。ただし、 a<b<cとする。(A)a,b,cの最大公約数は7。(B)bとcの最大公約数は21、最小公倍 数は294。(C)aとbの最小公倍数は84。
この動画を見る 
PAGE TOP