富山大 積分のフリしたただの漸化式 - 質問解決D.B.(データベース)

富山大 積分のフリしたただの漸化式

問題文全文(内容文):
$a_1=-1,b=0,c_1=4$
$a_{n+4}x^2+b_{n+1}x+c_{n+1}=\displaystyle \int_{2}^{x}{(a_n+b_n)t+n}at$
$a_n,b_n,c_n$の一般項を求めよ.

2021富山大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-1,b=0,c_1=4$
$a_{n+4}x^2+b_{n+1}x+c_{n+1}=\displaystyle \int_{2}^{x}{(a_n+b_n)t+n}at$
$a_n,b_n,c_n$の一般項を求めよ.

2021富山大過去問
投稿日:2021.03.03

<関連動画>

室蘭工業大 漸化式基本

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=2,a_{n+1}=\dfrac{1}{2}a_n+\dfrac{4n+2^n}{2^{n+1}}$である.
$a_n\lt a_{n+1}$を満たす最大の自然数$n$を求めよ.

室蘭工業大過去問
この動画を見る 

数学「大学入試良問集」【13−8 数学的帰納法(不等式の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$が自然数のとき、次の各問いに答えよ。
(1)不等式$n! \geqq 2^{n-1}$が成り立つことを証明せよ。
(2)不等式$1+\displaystyle \frac{1}{1!}+\displaystyle \frac{1}{2!}+・・・+\displaystyle \frac{1}{n!} \lt 3$が成り立つことを証明せよ。
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて、$a_1=1$とする)

①$a_{n+1}=a_n+2$

②$a_{n+1}=2a_n$

③$a_{n+1}=2a_n+2$

④$a_{n+1}=a_n+2n$

⑤$a_{n+1}=2a_n+2^n$

⑥$a_{n+1}=2a_n+2n$
この動画を見る 

福田のおもしろ数学571〜漸化式で定まった数列の項に関する等式の証明

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_0=1,a_1=3,a_{n+1}=\dfrac{{a_n}^2+1}{2} \ (n\geqq 1)$のとき

$\dfrac{1}{a_0+1}+\dfrac{1}{a_1+1}+\cdots +\dfrac{1}{a_n+1}+\dfrac{1}{a_{n+1}-1}=1$

を示せ。
    
この動画を見る 

福田のおもしろ数学482〜漸化式で定まる数列に関する不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$a_1=1,a_2=\dfrac{1}{2},$

$a_{n+2}=a_n+\dfrac{1}{2}a_{n+1}+\dfrac{1}{4a_na_{n+1}}$のとき、

$\dfrac{1}{a_1a_3}+\dfrac{1}{a_2a_4}+\dfrac{1}{a_3a_5}+\cdots +\dfrac{1}{a_{2025}a_{2027}}\lt 4$

であることを証明せよ。
    
この動画を見る 
PAGE TOP