【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説

問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
チャプター:

0:00 オープニング
0:47 問題紹介
1:18 p.qの少なくとも一方が2であることの証明
3:41 実験してみる(予想を立てる)
6:13 q≧5のときp^q+q^pが3の倍数になることの証明

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
投稿日:2021.07.17

<関連動画>

素数に関する整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3+5$が素数となる素数xは何コ?

京都教育大学附属高等学校
この動画を見る 

【数A】整数の性質:pを素数、aとbを自然数とする。p=a³-b³のとき、p-1が6の倍数であることを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pを素数、aとbを自然数とする。$p=a^3-b^3$のとき、p-1が6の倍数であることを証明せよ。
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
$\sqrt n \leqq \frac{m}{2} < \sqrt{n+1}$をみたす。以下を示す。
(1)$m^2-4n=0 or 1$
(2)$m < \sqrt n+ \sqrt m < m+1$
この動画を見る 

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
この動画を見る 

福田の数学〜早稲田大学2021年商学部第3問〜正の約数の総和が奇数になる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 次の設問に答えよ。\\
(1)225の全ての正の約数の和を求めよ。\\
\\
(2)2021以下の正の整数で、すべての正の\\
約数の和が奇数であるものの個数を求めよ。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 
PAGE TOP