剰余 - 質問解決D.B.(データベース)

剰余

問題文全文(内容文):
$111^{2021}$を$1111$で割った余りを求めよ.
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$111^{2021}$を$1111$で割った余りを求めよ.
投稿日:2021.01.08

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第1問(4)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)($\log_29$)($\log_3x$)-$\log_25$=2 を解くとx=$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

特殊な方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解であるとき,これを解け.
$3^x-54x+135=0$
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
この動画を見る 

ざ・見掛け倒し 複素数の基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-x+1=0$のとき,$x^{2020^{2021}}+\dfrac{1}{x^{2021^{2021}}}$の値を求めよ.
この動画を見る 

虚数係数の二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1-i)x^2+(3k-6i)x+8-5ki+2i=0$が実数解をもつような整数kとそのときの解を求めよ.

愛知大過去問
この動画を見る 
PAGE TOP