ヨビノリたくみ 東大 非典型的な漸化式 - 質問解決D.B.(データベース)

ヨビノリたくみ 東大 非典型的な漸化式

問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
投稿日:2020.12.27

<関連動画>

大学入試問題#237 岡山県立大学(2020) #数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$(1+2+3+・・・+n)^2=1^3+2^3+3^3+・・・+n^3$が成り立つことを示せ。
$n$:自然数

2020年岡山県立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2024商学部第1問(2)〜不等式で決定される自然数の列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$n$を$2$以上の整数とし、$a_1,a_2,a_3,・・・,a_n$を正の整数とする。
$a_1=1,{a_{i+3}}^3\lt 27{a_i}^4(i=1,2,3,・・・,n-1)$
$\displaystyle \sum_{i=1}^{n-1}\frac{a_i}{a_{i+1}}=\frac{a_1}{a_{2}}+\frac{a_2}{a_{3}}+\frac{a_3}{a_{4}}+・・・+\frac{a_{n-1}}{a_{n}}\lt 1$
であるとき、$a_n$のとりうる値の最大値は?
この動画を見る 

【数B】【数列】初項4、公差5の等差数列{a_n}と、初項8,公差7の等差数列{b_n}について、これら2つの数列に共通に含まれている項を、順に並べてできる数列{c_n}の一般項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項4、公差5の等差数列${a_n}$と、初項8,公差7の等差数列${b_n}$について、これら2つの数列に共通に含まれている項を、順に並べてできる数列${c_n}$の一般項を求めよ。
この動画を見る 

金沢大(医) 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#金沢大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
金沢大学過去問題
$a_1=36$ (nは自然数)
$a_{n+1}=2a_n+2^{n+3}n-17・2^{n+1}$
(1)$\{ a_n \} $の一般項を求めよ。
(2)$a_n$>$a_{n+1}$となるaの範囲及び$a_n$が最小となるnの値を求めよ。
(3)$S_n=a_1+a_2+a_3+ \cdots +a_n$で$S_n$が最小となるnの値をすべて求めよ。
この動画を見る 

【高校数学】等差数列×等比数列の和~どこよりも丁寧に分かりやすく~ 3-12【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差×等比

$S=1・1+2・2++3・2²+…n・2^{n-1}$

を求めよ
この動画を見る 
PAGE TOP