東工大 整数問題 - 質問解決D.B.(データベース)

東工大 整数問題

問題文全文(内容文):
$(ab-1)(bc-1)(ca-1)$が$abc$で割り切れる$(a,b,c)$をすべて求めよ.
ただし,$a,b,c$は自然数であり,$1\lt a\lt b\lt c$とする.

1978東工大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(ab-1)(bc-1)(ca-1)$が$abc$で割り切れる$(a,b,c)$をすべて求めよ.
ただし,$a,b,c$は自然数であり,$1\lt a\lt b\lt c$とする.

1978東工大過去問
投稿日:2020.12.09

<関連動画>

横浜市立(医)約数・倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
この動画を見る 

学習院大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m^2=2^n+1$を満たす自然数$(m,n)$をすべて求めよ

出典:学習院大学 過去問
この動画を見る 

【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(5)〜整数解と素数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)自然数$a$,$b$と素数$p$は等式
$a^4$-$4a^2b$+$4b^3$-$b^4$=$p^2$
を満たす。このとき、数の組($a$,$b$,$p$)を全て求めると($a$,$b$,$p$)$\boxed{\ \ シ\ \ }$である。
この動画を見る 

整数問題。1,1,2,2,3,3,4,4,を適当に並べてできる数は平方数でないことを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1,1,2,2,3,3,4,4
この8個の数を並べてできる8桁の数は平方数でないことを証明せよ。
この動画を見る 
PAGE TOP