九州大 虚数解を持つ3次方程式 - 質問解決D.B.(データベース)

九州大 虚数解を持つ3次方程式

問題文全文(内容文):
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.

1964九州大(文系)過去問
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x^2-x+a=0$は絶対値が1である虚数解をもつ.
実数$a$の値と3つの解を求めよ.

1964九州大(文系)過去問
投稿日:2020.10.21

<関連動画>

【高校数学】むやみに代入するな!因数定理のちょっとした裏技! #Shorts

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。

$x^3+6x^2-6x+7$
この動画を見る 

九州大 虚数解を持つ4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\sqrt{ 5 }-1+\sqrt{ 10+2\sqrt{ 5 } }i$
$\beta=-\sqrt{ 5 }-1+\sqrt{ 10-2\sqrt{ 5 } }i$

(1)
$\alpha,\beta$の両方を解にもつ実数係数の4次方程式を求めよ

(2)
$\beta^5$の値を求めよ

出典:1999年九州大学 過去問
この動画を見る 

大学入試問題#111 早稲田大学(2021) 次数下げ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{-1+\sqrt{ 5 }i}{2}$
$\beta=\displaystyle \frac{-1-\sqrt{ 5 }i}{2}$のとき
$\alpha^4+\beta^4$の値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

【高校数学】2次方程式②~判別式とは~数学界のDの意思を継ぐもの 2-8【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式解説動画です
この動画を見る 

簡単な指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^x-3^x=\sqrt{6^x-9^x}$
これの実数解を求めよ.
この動画を見る 
PAGE TOP