東大数学科卒AKITO初登場 最大公約数のポイント - 質問解決D.B.(データベース)

東大数学科卒AKITO初登場 最大公約数のポイント

問題文全文(内容文):
$2^{32}+1$と$2^{16}+1$の最大公約数は?

(1)$n^2$と$2n+1$は互いに素であることを示せ.
(2)$n^2+2$が$2n+1$の倍数となる$n$は?
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{32}+1$と$2^{16}+1$の最大公約数は?

(1)$n^2$と$2n+1$は互いに素であることを示せ.
(2)$n^2+2$が$2n+1$の倍数となる$n$は?
投稿日:2020.10.05

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]右の図のように、\triangle ABCの外側に辺AB,BC,CAをそれぞれ1辺とする\\
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ\\
線分で結んだ図形を考える。以下において\\
BC=a, CA=b, AB=c\\
\angle CAB=A, \angle ABC=B, \angle BCA=C とする。\\
\\
(1)b=6, c=5, \cos A=\frac{3}{5}のとき、\sin A=\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}であり、\\
\triangle ABCの面積は\boxed{\ \ タチ\ \ }、\triangle AIDの面積は\boxed{\ \ ツテ\ \ }である。\\
\\
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。\\
このとき、S_1-S_2-S_3 は\\
・0° \lt A \lt 90°のとき\boxed{\ \ ト\ \ } ・A=90°のとき\boxed{\ \ ナ\ \ }\\
・90° \lt A \lt 180°のとき\boxed{\ \ ニ\ \ }\\
\\
\boxed{\ \ ト\ \ }~\boxed{\ \ ニ\ \ }の解答群\\
⓪0である  ①正の値である  ②負の値である  ③正の値も負の値もとる\\
\\
(3)\triangle AID,\triangle BEF,\triangle CGHの面積をそれぞれT_1,T_2,T_3とする。\\
このとき、\boxed{\ \ ヌ\ \ }である。\\
\\
\boxed{\ \ ヌ\ \ }の解答群\\
⓪a \lt b \lt cならばT_1 \gt T_2 \gt T_3\\
①a \lt b \lt cならばT_1 \lt T_2 \lt T_3\\
②Aが鈍角ならばT_1 \lt T_2 かつT_1 \lt T_3\\
③a,b,cの値に関係なく、T_1 = T_2 = T_3\\
\\
(4)\triangle ABC,\triangle AID,\triangle BEF,\triangle CGHのうち、外接円の半径が最も小さいもの\\
を求める。0° \lt A \lt 90°のとき、ID \boxed{\ \ ネ\ \ } BCであり、\\
(\triangle AIDの外接円の半径)\boxed{\ \ ノ\ \ }(\triangle ABCの外接円の半径)\\
であるから、外接円の半径が最も小さい三角形は\\
0° \lt A \lt B \lt C \lt 90°のとき、\boxed{\ \ ハ\ \ }である。\\
0° \lt A \lt B \lt 90° \lt Cのとき、\boxed{\ \ ヒ\ \ }である。\\
\\
\boxed{\ \ ネ\ \ }、\boxed{\ \ ノ\ \ }の解答群\\
⓪\lt   ①=   ②\gt\\
\\
\boxed{\ \ ハ\ \ }、\boxed{\ \ ヒ\ \ }の解答群\\
⓪\triangle ABC   ①\triangle AID   ②\triangle BEF   ③\triangle CGH\\
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

高さが等しい面積比

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
高さが等しい図形の面積比
A:B:C=
*図は動画内参照
この動画を見る 

因数分解の裏技

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たすき掛けの因数分解の裏技説明動画です
$5x^2-11x+2=??$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。

(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。

2019早稲田大学商学部過去問
この動画を見る 

4つの相加相乗平均

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を正とする.
$\dfrac{a+b+c+d}{4}\geqq \sqrt[4]{abcd}$を示し,それを用いて$\dfrac{a+b+c}{3}\geqq \sqrt[3]{abc}$を示せ.
この動画を見る 
PAGE TOP