福岡教育大 指数関数の最小値 微分 - 質問解決D.B.(データベース)

福岡教育大 指数関数の最小値 微分

問題文全文(内容文):
$0 \lt a \lt 1,x \geqq 0$
$y=a^{3x}+a^{-3x}-9(a^{2x}+a^{-2x})+$
$27(a^{x}+a^{-x})$の最小値とそのときの$x$を求めよ

出典:2005年福岡教育大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \lt a \lt 1,x \geqq 0$
$y=a^{3x}+a^{-3x}-9(a^{2x}+a^{-2x})+$
$27(a^{x}+a^{-x})$の最小値とそのときの$x$を求めよ

出典:2005年福岡教育大学 過去問
投稿日:2020.03.31

<関連動画>

福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

【高校数学】条件付きの等式の証明~恒等式~ 1-9【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

福田のわかった数学〜高校2年生072〜三角関数(11)三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(11) 最大最小(1)\\
y=3\cos x+4\sin x (0 \leqq x \leqq \frac{\pi}{2})\\
(1)右辺を\cosで合成せよ。\\
(2)yの最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

神戸薬 放物線と2本の接線で囲まれた面積 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
この動画を見る 

福田のわかった数学〜高校2年生059〜対称式と領域(1)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(1)\\
実数x,\ yがx^2+y^2 \leqq 1を\\
満たしながら動くとき、\\
次の点の存在範囲を図示せよ。\\
(1)P(x+y,\ x-y)  (2)Q(x+y,\ xy)
\end{eqnarray}
この動画を見る 
PAGE TOP