岩手大 微分の基本 - 質問解決D.B.(データベース)

岩手大 微分の基本

問題文全文(内容文):
$f(x)=x-\sqrt{x^2}$は$x=0$で微分可能出ないことを示せ.

2018岩手大過去問
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x-\sqrt{x^2}$は$x=0$で微分可能出ないことを示せ.

2018岩手大過去問
投稿日:2020.08.25

<関連動画>

福田の数学〜上智大学2024TEAP利用型理系第1問(3)〜対数不等式を満たす最小の整数

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(i) $\log_{10} 2=0.301$とする。このとき、$\log_{10} 1.28=0.\boxed{ウ}$である。
(ii)$n$は$2$以上の整数とする。$n^{100}<1.28^n$となる最小の$n$について、$2^a \leqq n < 2^{a+1}$となる整数$a$は$\boxed{エ}$
この動画を見る 

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。

2020慶應義塾大学理工学部過去問
この動画を見る 

福田の数学〜名古屋大学2023年理系第3問〜方程式の負の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ (1)方程式$e^x$=$\frac{2x^3}{x-1}$ の負の実数解の個数を求めよ。
(2)$y$=$x(x^2-3)$と$y$=$e^x$のグラフの$x$<0における共有点の個数を求めよ。
(3)$a$を正の実数とし、関数$f(x)$=$x(x^2-a)$を考える。$y$=$f(x)$と$y$=$e^x$のグラフの$x$<0における共有点は1個のみであるとする。このような$a$がただ1つ存在することを示せ。

2023名古屋大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題027〜神戸大学2016年度理系数学第3問〜2曲線の相接条件と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを正の定数とし、2曲線$C_1:y=\log x,C_2:y=ax^2$が点Pで接している。
以下の問いに答えよ。
(1)Pの座標とaの値を求めよ。
(2)2曲線$C_1,C_2$とx軸で囲まれた部分をx軸のまわりに1回転させてできる
立体の体積を求めよ。

2016神戸大学理系過去問
この動画を見る 
PAGE TOP