北里大2020 分数型漸化式 - 質問解決D.B.(データベース)

北里大2020 分数型漸化式

問題文全文(内容文):
$a_1=2,a_{n+1}=\dfrac{4a_2+2}{a_n+5}$
一般項を求めよ.

2020北里大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,a_{n+1}=\dfrac{4a_2+2}{a_n+5}$
一般項を求めよ.

2020北里大過去問
投稿日:2020.08.02

<関連動画>

東大 2次方程式 解と係数 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-4x-1=0$の2つの解を$\alpha, \beta(a \gt \beta),S_{n}=\alpha ^n+\beta ^n$

(1)
$S_{1},S_{2},S_{3}$を求めよ。
$S_{n}$を$S_{n-1}$と$S_{n-2}$で表せ

(2)
$\beta^3$以下の最大の整数を求めよ

(3)
$a^{2003}$以下の最大の整数の1の位の数を求めよ

出典:2003年東京大学 過去問
この動画を見る 

福田の数学〜東北大学2024年文系第4問〜連立漸化式と不定方程式の整数解

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とする。2つの整数$a_n$, $b_n$を条件
$(1+\sqrt 2)^n$=$a_n$+$b_n\sqrt 2$
により定める。ここで$\sqrt 2$は無理数なので、このような整数の組($a_n$, $b_n$)はただ1つに定まる。
(1)$a_{n+1}$, $b_{n+1}$を$a_n$, $b_n$を用いてそれぞれ表せ。さらに$b_4$, $b_5$, $b_6$の値をそれぞれ求めよ。
(2)等式$(1-\sqrt 2)^n$=$a_n$-$b_n\sqrt 2$ が成り立つことを数学的帰納法を用いて示せ。
(3)$n$≧2 のとき、$b_{n+1}b_{n-1}$-$b_n^2$ を求めよ。
(4)$pb_6$-$qb_5$=1, 0≦$p$≦100, 0≦$q$≦100 をすべて満たす整数$p$, $q$の組($p$, $q$)を1組求めよ。
この動画を見る 

16神奈川県教員採用試験(数学:8番 数列の極限)

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
8⃣ $3S_n=a_n+6n+1$のとき$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る 

等比数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$a+ar+ar^2=1$
$ar^3+ar^4+ar^5=8$
$ar^6+ar^7+ar^8=?$
この動画を見る 

【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る 
PAGE TOP