問題文全文(内容文):
①$\displaystyle \lim_{n\to\infty} \vert 1+\dfrac{i}{n} \vert^n$
②$\left(1+\dfrac{i}{n}\right)^n$の実部を$a_n$,虚部を$b_n$でとする.
$\displaystyle \lim_{n\to \infty}a_n,\displaystyle \lim_{n\to \infty}b_n$を求めよ.
2018早稲田(教)過去問
①$\displaystyle \lim_{n\to\infty} \vert 1+\dfrac{i}{n} \vert^n$
②$\left(1+\dfrac{i}{n}\right)^n$の実部を$a_n$,虚部を$b_n$でとする.
$\displaystyle \lim_{n\to \infty}a_n,\displaystyle \lim_{n\to \infty}b_n$を求めよ.
2018早稲田(教)過去問
単元:
#数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \lim_{n\to\infty} \vert 1+\dfrac{i}{n} \vert^n$
②$\left(1+\dfrac{i}{n}\right)^n$の実部を$a_n$,虚部を$b_n$でとする.
$\displaystyle \lim_{n\to \infty}a_n,\displaystyle \lim_{n\to \infty}b_n$を求めよ.
2018早稲田(教)過去問
①$\displaystyle \lim_{n\to\infty} \vert 1+\dfrac{i}{n} \vert^n$
②$\left(1+\dfrac{i}{n}\right)^n$の実部を$a_n$,虚部を$b_n$でとする.
$\displaystyle \lim_{n\to \infty}a_n,\displaystyle \lim_{n\to \infty}b_n$を求めよ.
2018早稲田(教)過去問
投稿日:2020.07.16