早稲田(教)極限 - 質問解決D.B.(データベース)

早稲田(教)極限

問題文全文(内容文):
①$\displaystyle \lim_{n\to\infty} \vert 1+\dfrac{i}{n} \vert^n$
②$\left(1+\dfrac{i}{n}\right)^n$の実部を$a_n$,虚部を$b_n$でとする.
$\displaystyle \lim_{n\to \infty}a_n,\displaystyle \lim_{n\to \infty}b_n$を求めよ.

2018早稲田(教)過去問
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \lim_{n\to\infty} \vert 1+\dfrac{i}{n} \vert^n$
②$\left(1+\dfrac{i}{n}\right)^n$の実部を$a_n$,虚部を$b_n$でとする.
$\displaystyle \lim_{n\to \infty}a_n,\displaystyle \lim_{n\to \infty}b_n$を求めよ.

2018早稲田(教)過去問
投稿日:2020.07.16

<関連動画>

九州大 三次関数 極値の差 ヨビノリ技

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ

出典:2019年九州大学 過去問
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第3問〜領域における最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 連立方程式
$\left\{
\begin{array}{1}
0 \leqq y \leqq 6  \\
y \geqq -x+7 \\
y \leqq -2x+14
\end{array}
\right.\\
$
の表す領域をDとする。
(1)領域Dを図示せよ。
(2)点$(x,\ y)$が領域Dを動くとき、$3x+2y$の最大値と最小値を求めよ。
(3)点$(x,\ y)$が領域Dを動くとき、$x^2-6x+2y$の最大値と最小値を求めよ。

2021青山学院大学理工学部過去問
この動画を見る 

これ知ってた?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
指数タワーに関して解説していきます.
この動画を見る 

18和歌山県教員採用試験(数学:6番 二項定理)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$(x+5)^{70}$を展開したとき,$x$の何乗の係数が
最大になるか求めよ.
この動画を見る 

【数Ⅱ】三角関数と方程式 3 三角関数の2次方程式【文字の置き換えをしたら範囲をチェック!】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 
PAGE TOP