整数問題 最大公約数と最小公倍数 - 質問解決D.B.(データベース)

整数問題 最大公約数と最小公倍数

問題文全文(内容文):
$A$と$B$の最大公約数を$G$,最小公倍数を$L$とする.
$(A+B)^2-2LG=3600$,$A,B$を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A$と$B$の最大公約数を$G$,最小公倍数を$L$とする.
$(A+B)^2-2LG=3600$,$A,B$を求めよ.
投稿日:2020.06.16

<関連動画>

1255+m^2=2^n 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1255+m^2=2^n$
m,n自然数とする.
この動画を見る 

福田の数学〜中央大学2024理工学部第2問〜確率の基本性質と3で割ったときの剰余類

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$ を $3$ 以上の整数とする。$1, \, 2, \, \ldots, \, n$ の数が1つずつ書かれた $n$ 枚のカードがある。これらをよく混ぜて1枚のカードを引き、そこに書かれた数を $X$ とする。そのカードを元に戻し、よく混ぜてからもう一度1枚のカードを引き、そこに書かれた数を $Y$ とする。このとき $X-Y$ が $3$ の倍数である確率を $p(n)$、$X-Y-1$ が $3$ の倍数である確率を $q(n)$、$X-Y+1$ が $3$ の倍数である確率を $r(n)$ とする。
$(1)$ $q(3)=\fbox{ク}$ である。
$(2)$ $r(n)$ は $q(n)$ を用いて $r(n)=\fbox{ケ}$ と表せる。
$(3)$ $n$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{コ}}{\fbox{サ}}$ が成り立つ。
$(4)$ $n-1$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{シ}}{\fbox{ス}}$ が成り立つ。
$(5)$ $n-2$ が $3$ の倍数であるとき、$p(n)=\frac{\fbox{セ}}{\fbox{ソ}}$ が成り立つ。
この動画を見る 

整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る 

整数問題 千葉大(類)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$N!$の下8桁は0で下9桁に初めて0以外の数が現れる.
最小の$N$とそのときの9桁目の数を求めよ.

千葉大(類)過去問
この動画を見る 

福田のおもしろ数学418〜条件を満たす3つの数を割りきれるようにすることが可能か不可能かの考察

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

十の位が$a$,一の位が$b$である数を$\overline{ab}$で表す。

$0$以外の$1$桁の異なる$3$つの数$a,b,c$に対して

$\overline{ab}$が$c$で割り切れ、$\overline{bc}$が$a$で割り切れ

$\overline{ca}$が$b$で割り切れることは可能か?
   
この動画を見る 
PAGE TOP