三次関数の最大値 微分の基礎 大阪教育大 - 質問解決D.B.(データベース)

三次関数の最大値 微分の基礎 大阪教育大

問題文全文(内容文):
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1\leqq x\leqq 1$における最大値を求めよ.

2008大阪教育大過去問
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1\leqq x\leqq 1$における最大値を求めよ.

2008大阪教育大過去問
投稿日:2020.04.14

<関連動画>

福田のおもしろ数学122〜どれがどれですか?該当する関数を見つけてください

アイキャッチ画像
単元: #数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{array}{|c|c|c|c|}
\hline
x & a & b & c\\ \hline
f_1(x) & 0.980 & 0.921 & 0.825 \\ \hline
f_2(x) & 0.063 & 0.251 & 0.565 \\ \hline
f_3(x) & 0.803 & 0.644 & 0.517 \\ \hline
f_4(x) & 0.199 & 0.389 & 0.565 \\ \hline
\end{array}$
上の数表において、$f_1(x)$, $f_2(x)$, $f_3(x)$, $f_4(x)$は関数
$\sin x$, $\cos x$, $\frac{\pi}{2}x^2$, $3^{-x}$
のうちのどれかである。どれがどれか?
ただし、$a$, $b$, $c$は0<$a$<$b$<$c$<$\frac{\pi}{2}$, $b$=$\frac{a+c}{2}$ を満たし、数値はどれも小数第4位を四捨五入してある。
この動画を見る 

三角関数。指数方程式 簡単だよ

アイキャッチ画像
単元: #数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \dfrac{1}{4^{\sin^2x}}+\dfrac{1}{4^{\cos^2x}}=1$
この動画を見る 

【誘導あり:概要欄】大学入試問題#131 浜松医科大学(2020) 三角比

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
(1)
$x \gt 0$のとき
$x \gt \sin\ x$を示せ

(2)
$\displaystyle \frac{1}{6} \lt \sin10^{ \circ } \lt \displaystyle \frac{\pi}{18}$を示せ

出典:2020年浜松医科大学 入試問題
この動画を見る 

産業医科大 cos sin 和の値

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=\Box$
$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=\Box$

2019産業医大過去問
この動画を見る 

【数Ⅱ】三角関数と方程式 3 三角関数の2次方程式【文字の置き換えをしたら範囲をチェック!】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 
PAGE TOP