広島大 微分・積分 - 質問解決D.B.(データベース)

広島大 微分・積分

問題文全文(内容文):
$C:f(x)=x^3-4x^2+5x$である.
点$P(p,f_{(p)})$における接線が原点と$P$の間で$C$と交わる$(P\gt 0)$である.

①$P$の範囲を求めよ.
②$y$軸と接線と$C$で囲まれる2つの部分の面積が等しい$P$の値を求めよ.

1981広島大過去問
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:f(x)=x^3-4x^2+5x$である.
点$P(p,f_{(p)})$における接線が原点と$P$の間で$C$と交わる$(P\gt 0)$である.

①$P$の範囲を求めよ.
②$y$軸と接線と$C$で囲まれる2つの部分の面積が等しい$P$の値を求めよ.

1981広島大過去問
投稿日:2020.04.05

<関連動画>

【高校数学】 数Ⅱ-93 三角関数の性質④

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$

②$\cos \displaystyle \frac{11}{6}π$

③$\tan \displaystyle \frac{7}{6}π$

[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____

$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____

$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____

$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____

$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____

$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____

$\sin (π-\theta)=$⑩____

$\cos (π-\theta)=$⑪____

$\tan (π-\theta)=$⑫____
この動画を見る 

【数Ⅱ】対数の定義と方程式【対数の意味とは。計算公式・底の変換公式を使いこなして対数方程式を解こう】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
対数の定義と方程式に関して解説していきます.
この動画を見る 

#高専数学_10#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{(x-2)^2} dx$
この動画を見る 

福田のわかった数学〜高校2年生045〜軌跡(12)2本の直交する接線が引ける点の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(12) 接線直交
点Pは放物線$C:y=x^2$へ2本の接線が引け、その2本の
接線は直交するという。そのような点Pの軌跡を求めよ。
この動画を見る 

福田のおもしろ数学436〜三角方程式の解の総和の極限

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$k$に対して

$x=2k\pi \sin x$

の$x\geqq 0$におけるすべての解の和を$s(k)$とする。

このとき、$\displaystyle \lim_{k\to\infty}\dfrac{s(k)}{k^2}$を求めよ。
   
この動画を見る 
PAGE TOP