問題文全文(内容文):
$C:f(x)=x^3-4x^2+5x$である.
点$P(p,f_{(p)})$における接線が原点と$P$の間で$C$と交わる$(P\gt 0)$である.
①$P$の範囲を求めよ.
②$y$軸と接線と$C$で囲まれる2つの部分の面積が等しい$P$の値を求めよ.
1981広島大過去問
$C:f(x)=x^3-4x^2+5x$である.
点$P(p,f_{(p)})$における接線が原点と$P$の間で$C$と交わる$(P\gt 0)$である.
①$P$の範囲を求めよ.
②$y$軸と接線と$C$で囲まれる2つの部分の面積が等しい$P$の値を求めよ.
1981広島大過去問
単元:
#数Ⅱ#微分法と積分法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$C:f(x)=x^3-4x^2+5x$である.
点$P(p,f_{(p)})$における接線が原点と$P$の間で$C$と交わる$(P\gt 0)$である.
①$P$の範囲を求めよ.
②$y$軸と接線と$C$で囲まれる2つの部分の面積が等しい$P$の値を求めよ.
1981広島大過去問
$C:f(x)=x^3-4x^2+5x$である.
点$P(p,f_{(p)})$における接線が原点と$P$の間で$C$と交わる$(P\gt 0)$である.
①$P$の範囲を求めよ.
②$y$軸と接線と$C$で囲まれる2つの部分の面積が等しい$P$の値を求めよ.
1981広島大過去問
投稿日:2020.04.05