3秒で答え出ます(剰余の定理)数II 割った余り - 質問解決D.B.(データベース)

3秒で答え出ます(剰余の定理)数II 割った余り

問題文全文(内容文):
$3x^2-2x+1$をx-1で割った余りは?
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$3x^2-2x+1$をx-1で割った余りは?
投稿日:2021.05.26

<関連動画>

複素数 福井大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.

(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.

1999福井大過去問
この動画を見る 

福田の数学〜九州大学2024年理系第2問〜複素数平面と高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 整式$f(z)$=$z^6$+$z^4$+$z^2$+1
について、以下の問いに答えよ。
(1)$f(z)$=0 を満たす全ての複素数$z$に対して、|$z$|=1 が成り立つことを示せ。
(2)次の条件を満たす複素数$w$を全て求めよ。
条件:$f(z)$=0 を満たす全ての複素数$z$に対して
$f(wz)$=0 が成り立つ。
この動画を見る 

俺のアイデアを聞いて

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2+x+1=$の1つの解を$\omega$とする.
$1+2\omega+3\omega^2+4\omega^3+…+100\omega^{99}=a\omega+b$である.a.bの値を求めよ.
この動画を見る 

【数Ⅱ】【複素数と方程式】高次方程式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次方程式x³-5x²+ax+b=0が3+2iを解にもつとき、実数の定数a, bの値と他の解を求めよ。

3次方程式x³+ax²+bx+3a-20=0が2重解-2をもつとき、実数の定数a, bの値と他の解を求めよ。

3次方程式x³+3x²+(a-4)x-a=0が2重解をもつとき、定数aの値を求めよ。
この動画を見る 

基本対称式 あれで出そうよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\alpha+\beta+\delta=1 \\
\alpha\beta+\beta\delta+\delta\alpha=2,
\alpha\beta\delta=3
\end{array}
\right.
\end{eqnarray}$
を満たすとき,
①$\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}+\dfrac{1}{\delta^2}$
②$\dfrac{1}{\alpha^3}+\dfrac{1}{\beta^3}+\dfrac{1}{\delta^3}$の値を求めよ.
この動画を見る 
PAGE TOP