【高校数学】合同式の問題はこうやって解け!【受験】 - 質問解決D.B.(データベース)

【高校数学】合同式の問題はこうやって解け!【受験】

問題文全文(内容文):
$n$を$5$で割った余りが$4$のとき、$n^3-4n^2-4n-1$を$5$で割った余りを求めよ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$n$を$5$で割った余りが$4$のとき、$n^3-4n^2-4n-1$を$5$で割った余りを求めよ
投稿日:2021.02.10

<関連動画>

2020問題 整数 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2n-1}+6・2^{4n-1}$は11の倍数であることを示せ
この動画を見る 

東大 整数問題 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は自然数

(1)
$x+y+z=xyz(x \leqq y \leqq z)$を満たす$(x,y,z)$をすべて求めよ

(2)
$x^3+y^3+z^3=xyz$を満たす$(x,y,z)$は存在しないことを示せ

出典:2006年東京大学 過去問
この動画を見る 

東邦(医) 整数 不定方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'89東邦大学過去問題
0,n,-n (n自然数)のいずれかが書かれたカードが17枚、和が-24で平方の和は108である。
各カードの枚数とnの値。
この動画を見る 

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
この動画を見る 

福田の数学〜上智大学2024理工学部第2問〜漸化式と約数倍数の証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の条件によって定められる数列 ${a_n}$ を考える。
$a_1=2, \, a_{n+1}=a_n^2+a_n+1$
$(1)$ $a_n-2$ は $5$ で割り切れることを証明せよ。
$(2)$ $a_n^2+1$ は $5^n$ で割り切れることを証明せよ。
この動画を見る 
PAGE TOP