【小5 算数】 小5-16 合同な図形② - 質問解決D.B.(データベース)

【小5 算数】  小5-16  合同な図形②

問題文全文(内容文):
コンパスの線は①___でね!!
コンパス→青、定規→赤
※図は動画内参照
単元: #数学(中学生)#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
コンパスの線は①___でね!!
コンパス→青、定規→赤
※図は動画内参照
投稿日:2013.05.09

<関連動画>

【高校受験対策/数学】死守65

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(展開、因数分解)#2次方程式#比例・反比例#平行と合同#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守65

①右の図のように、直線$l$、直線$m$と2つの直線が交わっている。
$\angle a,\angle b,\angle c,\angle d,\angle e$のうち、どの角とどの角が等しければ、直線$l$と直線$m$が平行であるといえるか、その2つの角を答えなさい。

②$x^2-10x+25$を因数分解しなさい。

③2次方程式$(2x-5)^2=18$を解きなさい。

④右のア~オのうち、絶対値が最も大きい数を選び、記号で答えなさい。
ア $3.2$
イ $-\frac{7}{2}$
ウ $2\sqrt{2}$
エ $\frac{10}{3}$
オ $-3$

⑤右のア~オのうち、$y$が$x$に比例するものをすべて選び、記号で答えなさい。

ア 自然数$x$の約数の個数は$y$ 個である。
イ $x$ 円の商品を1000円支払って買うとき、おつりは$y$ 円である。
ウ 1200mの道のりを分速$x$ mの速さで進むとき、かかる時間は$y$ 分である。
エ 15%の食塩水が$x$ gあるとき、この食塩水に含まれる食塩の量は$y$ gである。
オ 何も入っていない容器に水を毎分2Lずつ$x$ 分間入れるとき、たまる水の量は$y$ Lである。

⑥右のア~オのうち、関数$y=2x^2$ついて述べた文として正しいものをすべて選び、記号で答えなさい。

ア この関数のグラフは、原点を通る。
イ $x \gt 0$のとき、$x$が増加すると$y$は減少する。
ウ この関数のグラフは$x$ 軸について対称である。
エ $x$の変域が$-1 \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 8$である。
オ $x$の値がどの値からどの値まで増加するかに関わらず、変化の割合は常に2である。
この動画を見る 

重なった合同なひし形 九州国際大附属(福岡)

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの同じひし形の重なった部分の面積は?
*図は動画内参照

九州国際大学付属高等学校
この動画を見る 

4分の1円の中の面積 2025早稲田佐賀

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#早稲田大学系属早稲田佐賀高等学校
指導講師: 数学を数楽に
問題文全文(内容文):
図の赤い部分の面積を求めよ(図は動画参照)
この動画を見る 

【補助線をどこに引く !?】図形:成蹊高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#高校入試過去問(数学)#成蹊高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ l $と$ m $が平行であるとき,$ \angle x $の大きさを求めよ.

成蹊高等学校過去問
この動画を見る 

【高校受験対策/数学】図形-37

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形37

Q
右の図は、$AB=$$\sqrt{3}$ cm、$BC=3$ cmの平行四辺形$ABCD$である。
辺$AD$上に$AE=1$ cmとなる点$E$をとり、線分$BD$と線分$CE$の交点を$F$とするとき、次の各問いに答えなさい。

問1
$△ABE$と$△CBD$が相似になることを次のように証明した。
(あ)には角、(い)には数、(う)には辺、(え)にはことばをそれぞれ入れなさい。

【証明】
$△ABE$と$△CBD$について
仮定より$\angle BAE=$ (あ) ・・・①
また$AE:CD=1:$ (い)  ・・・➁
$AB:$ (う) $=\sqrt{3}:3$ 
$=1:$ (い)   ・・・③

➁、③から
$AE:CD=AB:$ (う)  ・・・④

①、④から、2組の辺の(え)とその間の角がそれぞれ等しいので
$\triangle ABE \backsim \triangle CBD$

問2
$△BCF$の面積は$△ABE$の面積の何倍か求めなさい。
この動画を見る 
PAGE TOP