数列の和 解説2通り!! - 質問解決D.B.(データベース)

数列の和 解説2通り!!

問題文全文(内容文):
$(2-1) \times (2+1) + (3-2)(3+2)+(4-3)(4+3)+ \cdots +(99-98)(99+98)+(100-99)(100+99)$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$(2-1) \times (2+1) + (3-2)(3+2)+(4-3)(4+3)+ \cdots +(99-98)(99+98)+(100-99)(100+99)$
投稿日:2021.04.20

<関連動画>

千葉大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
90千葉大学過去問題
$a_1=1$
$3(a_1+a_2+\cdots +a_n)=(n+2)a_n$
(1)一般項$a_n$を求めよ。
(2)$\displaystyle\sum_{k=1}^n \frac{1}{a_k}$
この動画を見る 

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

福田の数学〜千葉大学2023年第6問〜連立漸化式となる確率Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 1個のさいころを投げて出た目によって数直線上の点Pを動かすことを繰り返すゲームを考える。最初のPの位置を$a_0$=0とし、さいころを$n$回投げたあとのPの位置$a_n$を次のルールで定める。
・$a_{n-1}$=7 のとき、$a_n$=7
・$a_{n-1}$≠7 のとき、$n$回目に出た目$m$に応じて
$a_n$=$
\left\{\begin{array}{1}
a_{n-1}+m (a_{n-1}+m=1,3,4,5,6,7のとき)\\
1 (a_{n-1}+m=2,12のとき)\\
14-(a_{n-1}+m) (a_{n-1}+m=8,9,10,11のとき)\\
\end{array}\right.
$
(1)$a_2$=1 となる確率を求めよ。
(2)$n$≧1について、$a_n$=7 となる確率を求めよ。
(3)$n$≧3について、$a_n$=1 となる確率を求めよ。
この動画を見る 

横浜市立大(医)三項間漸化式 特性方程式(数3不要)

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列{$x_n$}
$x_{n+2}=-ax_{n+1}+2a^2x_n$
$x_1=1,x_2=b$ $a \neq 0$ $n$自然数

$\displaystyle \lim_{ n \to \infty }x_n=0$となる$a,b$の条件

出典:1989年横浜市立大学 医学部 過去問
この動画を見る 

開成中学 整数 等差数列の和

アイキャッチ画像
単元: #算数(中学受験)#数列#数列とその和(等差・等比・階差・Σ)#過去問解説(学校別)#数学(高校生)#数B#開成中学
指導講師: 鈴木貫太郎
問題文全文(内容文):
平方数を3つ以上の連続数の和で表す
(例)$6^2=1+2+3+…+8=11+12+13$

(1)
$7^2$

(2)
$10^2$

(3)
$30^2$は何通りあるか

出典:2018年開成中学校 過去問
この動画を見る 
PAGE TOP