【数B】ベクトル:直線と平面のなす角 - 質問解決D.B.(データベース)

【数B】ベクトル:直線と平面のなす角

問題文全文(内容文):
平面と直線のなす角を求めます!
チャプター:

00:00 オープニング
00:24 平面と直線の公式確認
01:44 平面座標での直線と直線のなす角
03:22 空間の場合の平面と直線のなす角のもとめ方
05:27 実践
08:00 エンディング

単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面と直線のなす角を求めます!
投稿日:2021.10.08

<関連動画>

福田の1.5倍速演習〜合格する重要問題041〜上智大学2019年度TEAP文系第3問〜長方形の紙を折り返す問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$AB=2,BC=3$の長方形ABCDの形の紙がある。DE=aとなる辺DC上の
点Eを考える。AがEと重なるように紙を折るとき、折り目となる線と辺AD,
辺BCとの交点をそれぞれP,Qとする。

(1)aを用いて表すと、$AP=\frac{\boxed{二}}{\boxed{ヌ}}a^2+\frac{\boxed{ネ}}{\boxed{ノ}}$である.
(2)aを用いて表すと、$BQ=\frac{\boxed{ハ}}{\boxed{ヒ}}a^2+
\frac{\boxed{フ}}{\boxed{ヘ}}a+\frac{\boxed{ホ}}{\boxed{マ}}$である。
(3)aを用いて表すと、$PQ=\frac{\boxed{ミ}}{\boxed{ム}}\sqrt{a^2+\boxed{メ}}$である。
(4)四角形ABQPの面積はaを用いて表すと、$\frac{\boxed{モ}}{\boxed{ヤ}}a^2+\frac{\boxed{ユ}}{\boxed{ヨ}}a+\boxed{ラ}$
であり、その最小値は$\frac{\boxed{リ}}{\boxed{ル}}$である。

2019上智大過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(2 ,2)$ ,$\vec{ b }=(3 ,1)$ のとき、$\vec{ x }-\vec{ b }$ が $\vec{ a }$に平行で、
かつ $| \vec{ x }+\vec{ b } |=4$ となるような$\vec{ x }$ を成分表示せよ。
この動画を見る 

【高校数学】ベクトルの減法~逆ベクトル・零ベクトル~【数学C】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ベクトルの減法計算方法の確認動画です
逆ベクトル・零ベクトルとは??
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }$を満たすとする。tを$0 \lt t \lt 1$を満たす
実数とし、線分ABを$t:(1-t)$に内分する点をPとする。
また、直線OP上に点Qをとる。

(1)$\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }}$ である。
また、実数$k$を用いて、$\overrightarrow{ OQ }=k\overrightarrow{ OP }$と表せる。したがって
$\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB }  \ldots\ldots\ldots\ldots①$
$\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }$
となる。
$\overrightarrow{ OA }$と$\overrightarrow{ OP }$が垂直となるのは、$t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ のときである。

$\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$kt$  ①$(k-kt)$  ②$(kt+1)$
③$(kt-1)$ ④$(k-kt+1)$  ⑤$(k-kt-1)$

以下、$t \neq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$とし、$\angle OCQ$が直角であるとする。

(2)$\angle OCQ$が直角であることにより、(1)のkは
$k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②$
となることがわかる。

平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。
そのうち、点Bを含む部分を$D_1$、含まない部分を$D_2$とする。また、平面
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。
そのうち、点Aを含む部分を$E_1$、含まない部分を$E_2$とする。
・$0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ならば、点Qは$\boxed{\ \ ス\ \ }$。
・$\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1$ならば、点Qは$\boxed{\ \ セ\ \ }$。

$\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$D_1$に含まれ、かつ$E_1$に含まれる
①$D_1$に含まれ、かつ$E_2$に含まれる
②$D_2$に含まれ、かつ$E_1$に含まれる
③$D_2$に含まれ、かつ$E_2$に含まれる

(3)太郎さんと花子さんは、点Pの位置と$|\overrightarrow{ OQ }|$の関係について考えている。
$t=\frac{1}{2}$のとき、①と②により、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$とわかる。

太郎:$t\neq \frac{1}{2}$のときにも、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となる場合があるかな。
花子:$|\overrightarrow{ OQ }|$を$t$を用いて表して、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$
を満たすtの値について考えればいいと思うよ。
太郎:計算が大変そうだね。
花子:直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとしたら
$|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるよ。
太郎:$\overrightarrow{ OR }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表すことができれば、
tの値が求められそうだね。

直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとすると
$\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }$
$=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }$
となる。
$t\neq \frac{1}{2}$のとき、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるtの値は$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}$である。

2021共通テスト数学過去問
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その1

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)$s+2t=3$
(2)$1≦s+t≦2, s≧0, t≧0$
この動画を見る 
PAGE TOP