【数A】確率:条件付き確率の考え方 - 質問解決D.B.(データベース)

【数A】確率:条件付き確率の考え方

問題文全文(内容文):
確率:条件付き確率の考え方に関して解説していきます.
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率:条件付き確率の考え方に関して解説していきます.
投稿日:2022.05.13

<関連動画>

場合の数 並び替え基本2【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・「equations」という単語の文字をすべて使って順列を作るとき、次の問いに答えよ。
(1)少なくとも一端に子音の文字がくるものは何通りあるか。
(2)eとaの間に文字が2つあるものは何通りあるか。

・A,B,C,D,E,Fの6文字をすべて使ってできる順列を、ABCDEFを1番目として自書式に並べるとき、次の問いに答えよ。
(1)140番目の文字列を求めよ。
(2)FBCDAEは何番目の文字列か。
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間\\
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を\\
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば\\
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円と\\
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もしC \lt 90\\
であれば、飲食店は要請に応じず、超過利益は0万円とする。\\
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円\\
(D \geqq C)であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は\\
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の\\
節約分は0万円とする。\\
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合\\
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体\\
の補償金の節約分が最も大きくなるのはC=\boxed{\ \ アイウ\ \ }\ 万円の場合である。\\
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店\\
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、\\
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの\\
とする。また、ここでは自治体が支払うことができる補償金の上限については、\\
125万円か150万円か175万円のどれかに定まっているが公表されておらず、\\
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である\\
確率が\frac{2}{5}であると予想しているものとする。\\
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限\\
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円\\
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。\\
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店\\
の超過利益(の期待値)は\boxed{\ \ エオカ\ \ }\ 万円となる。\\
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請\\
の際に自治体に提示したとすると\\
(\textrm{a})飲食店の超過利益(の期待値)は\boxed{\ \ キクケ\ \ }\ 万円であり、\\
(\textrm{b})自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は\\
\boxed{\ \ コサシ\ \ }\ 万円。\\
(\textrm{c})自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は\\
\boxed{\ \ スセソ\ \ }\ 万円。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(8)〜整数解の個数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の式を満たす整数の組($x,y,z$)の個数を求めよ。
(1)$x+y+z=9$ ($x,y,z$は$0$以上の整数)
(2)$x+y+z=9$ ($x,y,z$は自然数)
(3)$x+y+z \leqq 9$ ($x,y,z$は$0$以上の整数)
(4)$x+y+z \leqq 9$ ($x \geqq 1,y \geqq 0,z \geqq 0$)
この動画を見る 

大阪医科大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒石3個と白石7個を一列に並べる。
この列が、「2つ以上の連続した白石の両端に黒石がある」という部分を含む確率は?

大阪医科大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 10進法で表したときm桁(m \gt 0)である正の整数nの第i桁目(1 \leqq i \leqq m)を\\
m_iとしたとき、i≠jのときn_i≠n_jであり、かつ、次の(\textrm{a})または(\textrm{b})のいずれか\\
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。\\
(\textrm{a})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \lt n_{i+1}となり、\\
iが偶数の時n_i \gt n_{i+1}となる。\\
(\textrm{b})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \gt n_{i+1}となり、\\
iが偶数の時n_i \lt n_{i+1}となる。\\
例えば、361は(\textrm{a})を満たす10進法3桁のデコボコ数であり、52409は(\textrm{b})を\\
満たす10進法5桁のデコボコ数である。なお、4191は(\textrm{a})を満たすが「i≠jのとき\\
n_i≠n_jである」条件を満たさないため、10進法4桁のデコボコ数ではない。\\
(1)nが10進法2桁の数(10 \leqq n \leqq 99)の場合、n_1≠n_2であれば(\textrm{a})または(\textrm{b})を\\
満たすため、10進法2桁のデコボコ数は\ \boxed{\ \ アイ\ \ }\ 個ある。\\
(2)nが10進法3桁の数(100 \leqq n \leqq 999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ ウエオ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ カキク\ \ }個あるため、\\
10進法3桁のデコボコ数は合計\boxed{\ \ ケコサ\ \ }個ある。\\
(3)nが10進法4桁の数(1000 \leqq n \leqq 9999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ シスセソ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ タチツテ\ \ }個あるため、\\
10進法4桁のデコボコ数は合計\boxed{\ \ トナニヌ\ \ }個ある。また10進法4桁のデコボコ数\\
の中で最も大きなものは\boxed{\ \ ネノハヒ\ \ }、最も小さなものは\boxed{\ \ フヘホマ\ \ }である。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP